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Boundary Layer

Boundary Layer - layer of fluid near the surface that has undergone
a change in velocity because of the shear stress at
the surface.
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Boundary layer

At the wall the fluid particles are attached to the wall (no slip b.c.)
u=0
Assume the thickness of boundary layer is where

u=0.99U

Prof. E. Ratts ME 379 Thermal Fluids Laboratory



THE UNIVERSITY OF MICHIGAN - DEARBORN

Boundary Layer
Note when velocity gradient is small, shear stress is small.
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Boundary Layer Transition

« At some distance downstream on the flat plate, disturbances grow
and laminar boundary layer transitions to turbulent boundary layer.
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Von Karman Integral

» Combining the integral form of the continuity and momentum
equations results in the integral.

e \alid for laminar or turbulent flow.

» Requires knowing the velocity profile
In the boundary layer.
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Von Karman Integral

e Assuming a third order polynomial
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* Result is the boundary layer thickness.
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Von Karman Integral

» Assuming power law form for turbulent flow.
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u:(aj n=18 107 <Re, <108
9 1O8<Rex<109

.

* Result is the boundary layer thickness (n = 7).
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Laminar vs. Turbulent Velocity Profile

| Laminar
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Experiment Apparatus
Pressure P 1n air box
Flow from air box i Measure all‘ temperature
_ i (thermometer)
' L l » Measure air velocity (pitot
= ® tube)
e ey Pitot tube position from plate

Is controlled by micrometer.
Plate smooth on one side. - .
Rough on other side. Its measurement IS I’e|a'[lve.

Traversing crosshead
with micrometer

!
L

Fine Pitot tube
Exhaust to

atmosphere Pitot pressure P

» Blower forces air through duct.
» User controls air flow rate
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Pressure Probe for Measuring Fluid Velocity

« Asmall diameter tube is placed with its opening perpendicular to
the fluid velocity.

» The fluid at the opening of the tube has zero velocity and thus
represents the stagnation pressure or total pressure.
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Pressure Probe for Measuring Fluid Velocity

A manometer is used to measure the difference between
stagnation pressure and static pressure.

» Based on the hydrostatic equation, a liquid column of fluid can
be converted to a pressure differential.
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