THE UNIVERSITY OF MICHIGAN - DEARBORN

External Viscous Flow

Consider External Flow around a cylinder and the external forces acting on the surface of the cylinder in crossflow.

Total Drag

Total force in horizontal direction (fluid direction) due to fluid pressure forces and shear forces.

$$D_{T} = D_{p} + D_{f}$$
$$D_{T} = b \frac{D}{2} \left[\int_{A} P \cos \theta \, d\theta + \int_{A} \tau_{w} \sin \theta \, d\theta \right]$$

Drag Coefficient

Without detailed information, the alternative is to define a dimensionless drag coefficient.

$$C_{\rm D} = \frac{D_{\rm T}}{\frac{1}{2}\rho U^2 A_{\rm c}}$$

where A_c is a characteristic area (usually projected area).

THE UNIVERSITY OF MICHIGAN - DEARBORN

Drag Coefficient

FIGURE 8.9 Drag coefficients for flow around a long cylinder and a sphere. (See E. Achenbach, J. Fluid Mech., Vol. 46, 1971, and Vol. 54, 1972.)

Prof. E. Ratts

THE UNIVERSITY OF MICHIGAN - DEARBORN Boundary Layers with Pressure Gradient

Consider the extreme case of flow around a vertical flat plate (blunt object).

• Form Drag or Pressure Drag

ME 379 Thermal Fluids Laboratory

THE UNIVERSITY OF MICHIGAN - DEARBORN Boundary Layers with Pressure Gradient

Flow around a cylinder or sphere.

Turbulent

Prof. E. Ratts

Laminar

THE UNIVERSITY OF MICHIGAN - DEARBORN Example

Problem

Determine the drag force for a 3 m long, 30 cm diameter cylinder. The air velocity is 35 m/s at 1 atm and 20 C.

Solution

$$F_D = C_D \frac{1}{2} \rho V^2 (DL)$$

The air properties are:

$$\mu = 1.79 \text{ x} 10^{-5} \text{ N} - \text{s/m}^2$$
 $\rho = 1.21 \text{ kg/m}^3$

$$\operatorname{Re}_{\mathrm{D}} = \frac{\rho V D}{\mu} = 7.1 \times 10^5$$

Prof. E. Ratts

THE UNIVERSITY OF MICHIGAN - DEARBORN

Drag Coefficient

FIGURE 8.9 Drag coefficients for flow around a long cylinder and a sphere. (See E. Achenbach, J. Fluid Mech., Vol. 46, 1971, and Vol. 54, 1972.)

Prof. E. Ratts

THE UNIVERSITY OF MICHIGAN - DEARBORN Example

The drag coefficient from figure.

 $C_D \approx 0.3$

$$F_D = C_D \frac{1}{2} \rho V^2 (DL)$$
$$= 200 \text{ N}$$

THE UNIVERSITY OF MICHIGAN - DEARBORN External Flow Experiment

The windtunnel is used for this experiment. A cylinder is attached to a mechanical balance in the test section.

THE UNIVERSITY OF MICHIGAN - DEARBORN External Flow Experiment

The force diagram for the cylinder – mechanical balance.

- Set blower speed.
- Add counterweights to align cylinder vertically.
- Record counterweights.
- Determine drag force and coefficient.

$$+ cw \sum M_O = 0$$

$$xF_B - yF_T - wF_D = 0$$

$$C_D = \frac{2F_D}{\rho V^2 (DL)}$$

Prof. E. Ratts