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Introduction

The success of the U.S. motor vehicle industry very much depends on the quality of the products
it produces. As automotive electronic control systems have become more advanced and
sophisticated in recent years, malfunction phenomena have also become increasingly more
complicated. It is well recognized in the automotive industry that effective vehicle diagnostic
systems will play a key role in the competitive market of the new century. In order to meet this
challenge of improved quality control and diagnostics, the major US automotive companies are in
the process of launching end-of-line test systems at every North American assembly plant.  Part of
the end-of-line test system is designed to collect and analyze Electronic Engine Controller (EEC)
data while the vehicle is dynamically tested.  Operators drive the vehicle through a preset profile
and the vehicle is either passed or failed according to the data collected during the tests. The
pass/fail decision is made based on two information sources – an EEC on-board tests and an EEC
off-board test that is performed by the vehicle test system on EEC generated data.  Our Fuzzy
Intelligent System is focused on automating the off-board testing process to obtain faster and more
reliable test results than are currently realized by line engineers.

As its name implies, our automated diagnostic system is based on fuzzy logic.  The theory of
fuzzy logic is aimed at the development of a set of concepts and techniques for dealing with sources
of uncertainty, imprecision or incompleteness [Zad69, YOT87, Zim91].  Fuzzy systems have been
successful in many applications including control systems when gradual adjustments are necessary
[Ayo95, NHW91, RhK93, TaS85, Kan93, GKG94].  The nature of fuzzy rules and the relationship
between fuzzy sets of differing shapes provide a powerful capability for incrementally modeling a
system whose complexity makes traditional expert system, mathematical, and statistical approaches
very difficult, and provide a more flexible, and richer representational scheme than other methods.

There are several issues that make fuzzy logic modeling desirable for automotive testing:

1. Fuzzy logic can effectively model incompletely or inaccurately described systems.
Expert knowledge regarding faults is almost always incomplete and vague because
of the complexity of modern vehicles.  Engineering experts are usually aware of
only a subset of the parameters that impact the behavior of a component, and,
furthermore, it is often difficult to collect adequate data for the parameters of which
they are aware.

2. Fuzzy logic is resistant to imprecision in system data.  Collected data is often
unreliable due to inconsistencies in manufacturing and the test process itself.



Seemingly minor changes in the manufacturing process such as changing a single
worker or tool in the assembly process can lead to significant changes and/or noise
in the collected data.  This is especially a concern during the diagnostic modeling or
training stage when we hope the system we are testing will remain relatively stable.

3. Fuzzy logic rules and knowledge is expressed in terms familiar to engineers – low,
medium, hot, cold, high, low, etc.

4. Fuzzy logic decisions can be made quickly (in seconds) and, thus, do not slow
down dependent manufacturing processes.

5. Fuzzy logic can model the information (possibly conflicting) from multiple
engineering experts.

In the remainder of this paper, we present the major features of our Fuzzy Intelligent System
including its abilities to automatically formulate rules (learn), accommodate expert knowledge,
make diagnostic decisions from test data, and, finally, deal effectively with system uncertainty and
data imprecision.  The system was developed for use in Windows 9X, NT, 2000.  A particular
application to detection of vacuum leaks in vehicles is given at the end.

Rule Generation: Learning

Fuzzy reasoning is performed within the context of a fuzzy system model, which consists of
control and solution variables, fuzzy sets, rule (proposition) statements, and an underlying control
structure.  For our diagnostic problem, the control variables are the known parameters of behavior
(e.g. air intake, engine speed, etc), the solution variable(s) are the possible faults (e.g. vacuum leak),
and the fuzzy sets consist of values or terms of the control and solution variables (e.g. high, low,
medium).  The rules describe the system model in terms of these variables and terms.  In general, if
we let X = {x1, x2, …  , xn} be a set of n control variables, Σi = {αi

1, αi
2, …  , αi

pi} be the set of p
fuzzy terms associated with control variable xi, y be a single solution variable, and Γ={τ1, τ2, …  ,
τq} } be the set of q fuzzy terms associated with the solution variable, then a fuzzy rule can be
expressed as:

IF (xk1 is α i
k1) AND (xk2 is α i

k2 ) AND ... (xkm is α i
km ), THEN y is τi

k

Here, m ≤ n, {xk1, xk2, ..., xkm} ⊂  X, {α i
k1, α i

k2 , ... , α i
km } ⊂  Σ i , and τi

k ∈  Γ.  The goal of
the fuzzy learning process in our system is to generate a set, or knowledge base, of these rules that
together describe the behavior of the system we wish to test.  A diagram of the learning process
appears below:

As can be seen from the diagram, the system can learn through one of two processes – direct
translation of engineering knowledge and automatic rule generation.  The first case is the simplest
and is discussed first.  An engineer or system operator can manually enter known operating
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Figure 1: The fuzzy learning process.  There are two ways to generate rules –
automatically as defined by the steps on the left of the diagram, and through
engineering knowledge as shown on the upper right of the diagram.



Figure 2: The rule editing interface
for our system.
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Figure 3: Input variable editing interface (a), the membership function editing interface (b) of
the Fuzzy Intelligent System, and fuzzy terms after boundary term modification (c).

characteristics and system fault and no-fault behaviors through our system’s rule editing interface.
A figure of this interface follows:

The dialog on the left shows all of the control
variables in an “if” column on the left and the solution
variable in the “then” column to the right.  A user can
use the drop-down selection boxes to change the
condition (fuzzy term) for each control variable and to
change the rule consequence (output fuzzy term).  The
system allows both editing of existing rules (as seen
here) and the creation of new rules using the “New”
button.  The dialog also allows the user to change a
rule’s priority.  The priority is a weight applied in the
inference process that modifies the overall belief (or
truth) value of a rule.  In general, if more than one rule
fires, the rule(s) with the highest priority will dominate
in the calculation of the solution variable.  By default,

rules added by an engineering expert are given higher priority than rules generated by automatic
learning because they are based on a wider variety of knowledge and experience than the
automatically generated rules.

The system also allows the user to edit the properties of the control and output variables,
including the number, type, and shape of it’s fuzzy terms.  Every fuzzy term of each system variable
is defined by a special membership function.  The membership function is used to calculate the
belief that a particular data sample belongs to a given fuzzy term.  The shape of these membership
functions are controlled by their function type (e.g. linear, Gaussian) and a small set of critical
parameters.  Our Fuzzy Intelligent System allows the user to view and modify the fuzzy term types
and critical parameters through a simple visual interface shown in figure 3.

Figure 3(a) shows the input variable and fuzzy membership function edit dialogs.  Using these,
the user can specify variable names, the number of fuzzy terms, membership function critical
parameters, and special conditions for the boundary terms.  In fuzzy logic theory, the boundaries of
the minimum and maximum terms extend (as shoulders) to -∞  and +∞  respectively as seen in figure
3(b).  In real engineering applications, data that falls very far outside of the natural range of a
parameter is generally an indication of a fault.  Unfortunately, if we generate a rule with an
antecedent involving a boundary term and a consequence of “no-fault” (e.g. IF x1 is LOW THEN y
is NO-FAULT, where LOW and NO-FAULT are friendly names for αi

1 and τi respectively), we
may fire a rule that says data reading outside of usual operating conditions is normal.   We allow the



user to remedy this situation by specifying that special boundary terms be created by the system just
outside of the normal range of a given parameter.  These boundary terms indicate LOW-OUT-OF-
RANGE and HIGH-OUT-OF-RANGE, and they extend to -∞  and +∞  respectively, as theory
requires. Next, letting αi

L
 be the left boundary term, αi

R be the right boundary term, and τR be the
consequence “out-of-range”, the system automatically generates the following rules for each
variable having the special boundary terms:

1.  IF (xL is αi
L), THEN y is τR 2.  IF (xL is αi

R), THEN y is τR

  Figure 3(c) shows the updated fuzzy terms after boundary conditions have been added to the
variable in 3(b).  If desired, the system will add only one of the boundary terms.

The interface components we have described thus far allow the user to specify a set of rules that
define the test system behavior and to modify low level fuzzy set structure for system variables.
These abilities are useful in particular situations when engineering heuristics outweigh available
objective data.  However, in most cases, this manual method of knowledge base construction is
tedious.  With our Fuzzy Intelligent System we provide a procedure for automatic rule generation
that is combined seamlessly with the engineering heuristic knowledge described above to form a
powerful learning system.

The automatic learning process is controlled by a
set of high level parameters supplied by the user
through the dialog shown below.  This dialog is the
main options dialog of the system and allows the user
to specify such key parameters as system mode (rule
generation or inference), membership function type,
defuzzification methods, and even logical operator
types.  This wide range of options gives the system the
flexibility it needs to be molded to fit a wide range of
different diagnostic tasks.

Once the user has specified the parameters that will
govern the process, automatic rule generation can
begin.  The algorithm for automatically generating
fuzzy rules is effective and efficient.  It goes through a
number of iterations of clustering-extracting and re-
clustering.  The clustering-extraction procedure first

separates the training data into clusters and calculates critical parameters for the membership
functions of each control variable that geometrically “bend” them toward the cluster centers. One
fuzzy rule is generated for each cluster using a “winner-take-all” method, where the consequence
with the largest number of data samples in the training set becomes the consequence of the rule for
that cluster.  If any new rule generated during the learning process conflicts with or is identical to an
existing rule, the new rule is discarded.  After fuzzy rules are generated for all of the clusters,
procedures to merge rules, delete useless rules, and re-cluster are applied.  Each iteration of
clustering, critical parameter choice, merging and re-clustering may change the control variable
membership functions; therefore, each iteration may generate different rules.  The process ends
when the membership functions – thus, the rule base – is sufficiently stable.  For more complete
details on this process, the reader is referred to [LuC97].

Figure 4: Fuzzy Intelligent System
high-level options
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Figure 5: The fuzzy inference process.

Fuzzy Inference: Testing

Fuzzy Inference (or reasoning) is the process of determining (inferring) the correct output, y = τi,
given a data sample D = {d1, d2, …  , dn), where τi is the output fuzzy term that best corresponds to
D given the set of fuzzy rules available.  The inference process is what is actually used by end-of-
line test engineers to test vehicles in real time at the assembly plants.  Below we present a high-
level diagram of the inference process:

The Fuzzy Intelligent System inference
process uses a min-max technique to
calculate the value for the output variable in
a few steps.  First, the incoming data
sample is compared with the antecedent of
every rule in the knowledge base, and a
belief (or truth) value is calculated
describing how closely the data sample
conforms to each rule.  The belief value for
each rule is calculated by taking the
minimum predicate truth of the rule applied

to the data sample.  Next, we (optionally) multiply the belief value for each rule by its priority to get
a modified belief.  The modified belief value is used to find the rule with the maximum belief for
each consequence.  This is the maximization part of the min-max process.  After the min-max
procedure is completed, we are left with a belief (0-1) for each consequence, or term of the solution
variable.  Defuzzification is used to calculate a final solution value from the solution variable term
beliefs.  Our system allows the user to specify a defuzzification method.  The default, centroid
method, defuzzifies the output using a weighted average of the solution variable.  For a more
theoretical discussion of the defuzzification process, see [LuC97].

Sometimes a data sample does not conform to any rule, as in the case when a fault the system
has never seen before is presented.  In these cases, no rule fires, and we say the solution is
“unknown.”  The interpretation of the “unknown” value is application specific; however, in a
diagnostic application, it indicates that a particular data sample is “suspect” (probably faulty)
though the exact fault cannot be determined by the fuzzy system.  This fact allows us to train the
system in situation where data describing faults is difficult to obtain or unreliable.  We can train the
system using only known good data and consider all “unknown” samples to be indications of a
fault.  Alternatively, the user can specify that the nearest rule fire when a data sample is “unknown.”
The nearest rule is defined as the rule with the minimum Euclidean distance to the data sample (a
rule’s geometric position is considered to be the center of the cluster it defines).

Given a set (possibly large) of data samples, our Fuzzy System performs inference on all of them
simultaneously in a matter of seconds.  This is true even for knowledge bases with hundreds of
rules.  Furthermore, during inference, our system can collect detailed inference statistics such as
which rule(s) fired, the firing frequency, the belief values for each rule, and more.  Engineers and
system developers can use this information to help interpret unusual cases, such as
misclassifications.

Application to End-of-Line Diagnostics

Our Fuzzy Intelligent System has been used successfully to detect vacuum leaks in end-of-line
testing in automotive vehicle plants.  In this application, engineering experts chose five parameters
important to vacuum leak detection as control variables for the fuzzy system: Lambse1, Lambse2,



Throttle Position, Mass Air Flow, and Idle Engine Speed.  Each control variable was associated
with three, linear terms – LOW, MEDIUM, and HIGH.  There was a single solution variable
labeled Vacuum Leak with the same three fuzzy terms as the control variables.  We trained our
system on hundreds of data samples from two different vehicle models.  We then tested the system
on data samples not in the training set.  Results of these tests are summarized in the table below

(model names are not used to protect proprietary information):
We get almost perfect classification of good samples.  Samples from vehicles with vacuum leaks

are classified correctly about 90-95% of the time.  These are excellent results and have encouraged
us to look for new applications for our Fuzzy Intelligent System in areas such as general vehicle
diagnostics using powertrain control module (PCM) signals.  For more thorough description of our
Fuzzy Intelligent System and the vacuum leak detection application see [LuC97].
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Vehicle
Model

# sample
with VL

% VL correctly
classified

# samples
w/o VL

% samples w/o VL
correctly classified

Model I 42 95.2 1651 98.0
Model II 37 89.1 1254 99.3

Figure 6: Results using the fuzzy system to detect vacuum leaks (VL) in end-of-
line assembly plant vehicle tests.


