
Adaptive Web-based Database
Communities

Athman Bouguettaya1

Boualem Benatallah2

Brahim Medjahed1

Mourad Ouzzani1

Lily Hendra3

 1 Department of Computer Science,
Virginia Tech, USA

 { athman, brahim, mourad} @nvc.cs.vt.edu

 2 School of Computer Science and Engineering,

The University of New South Wales, Australia
 boualem@cse.unsw.edu.au

 3 Litton PRC, USA
 hendra_lily@prc.com

INTRODUCTION

As a result of the rapidly growing number of organizations
conducting business over the Web, a large number of
heterogeneous information sources (e.g., home pages, tabular data,
online digital libraries) is now readily available. The ability to
efficiently and effectively share data on the Web is a critical step
towards the development of the so-called information super-
highway. Existing organizations would form online alliances to
deliver integrated value-added information sources (e.g., e-
catalogs, information portals).

The evolution into the global information infrastructure and the
concomitant increase in the available information, is offering a
powerful distribution vehicle for organizations that need to
coordinate the use of multiple information sources. However, the
technology to organize, search, integrate, and evolve these sources
has not kept pace with the rapid growth of the available
information space. The efficient sharing of Web data is especially
challenging in environments where the information sources are
largely autonomous and evolve dynamically. One of the key issues
encountered frequently in large cooperative environments, such as
data-intensive Web applications, is how users can efficiently query
large, intricate, heterogeneous information sources.

Traditional techniques in multidatabases focused on data
sharing among a small number of heterogeneous databases (Kim,
W. and Seo, J., 1991). Emerging techniques for querying data over
the Web focused on information discovery and brokering in the
context of unstructured or semi-structured Web-resident data
(Florescu, D., Levy, A., and Mendelzon, A., 1998). Our research
aims at building a viable infrastructure for integrating and querying
Web-accessible databases (Bouguettaya, A., Benatallah, B.,
Hendra, L., Ouzzani, M., and Beard, J., 2000).

In this chapter, we present our work in the WebFINDIT project.

WebFINDIT aims to achieve the scalable integration and efficient
querying of Web-accessible databases through the incremental
data-driven discovery and formation of interrelationships between
information sources. In particular, we present the salient features
that are related to the following issues:

• Information space organization: In Web applications, the
information space is large and dynamic. On top of that,
existing Web tools give little support for the logical
organization of data. Thus, the effective use of data in the
anarchic Web has become enormously complex.
WebFINDIT uses an ontological organization of the
information space to filter interactions and accelerate service
searches. More precisely, the information space is organized
as domain-specific groups. Each group forms a database
community (also called ontology) to represent the domain of
interest (some portion of the information space) of the related
databases. Databases join and leave communities at their
discretion.

• Queries over database communities: An important issue
to tackle is how users can efficiently query the potentially vast
amount of available information sources. A fundamental
premise of our approach is that, in a dynamic environment
such as the Web, users would have to be incrementally made
aware of available information. Users must be educated about
the information of interest and thus able to learn on the fly
what different databases contain to eventually establish a link
to those databases of some interest.

• Dynamics: Database communities operate in a highly
dynamic environment. New information sources could come
on-line, existing information sources might be removed, etc.
Therefore, a key issue is the design of an architecture to cater
for dynamic relationships among information communities, as
well as relationships among Web-accessible databases and

communities. WebFINDIT provides a monitoring mechanism
to dynamically alter relationships between different database
communities. This is achieved by using distributed agents
that work as background processes. Their role is to
continually gather and evaluate information about the inter-
community relationships to recommend changes.

A WebFINDIT prototype has been fully implemented in the
context of a healthcare application and a working demo is available
online (http://www.nvc.cs.vt.edu/~project). Users can navigate in
an object graph representing the information source clustering and
invoke operations dynamically on these objects.

The remainder of this chapter is organized as follows. In
Section 2, we discuss related work. In Section 3, we present the
WebFINDIT’s approach for information space organization and
modeling. In Section 4, we present a language for advertising and
querying database communities. In section 5, we present agent
support for monitoring and maintaining inter-community
relationships. We present the system implementation in Section 6.
In Section 7, we give some concluding remarks.

RELATED WORK

In this section, we briefly review some research efforts most related
to our work: information discovery and data integration.

Information Discovery

Information discovery systems, such as GIOSS (Tomasic, A.,
Gravano, L., Lue, C., Schwarz, P., and Haas, L., 1997b) and
Harvest (Bowman, C., Danzig, P., Schwartz, U. M. M., Hardy, D.,
and Wessels, D., 1995), focus on building efficient indexing
schemes for accessing networked document databases. They rely
on keyword or topic-based content indexing techniques (Gudivada,
V., Raghavan, V., Grosky, W., and Kasanagottu, R., 1997). In these

systems, resources are typically text documents. Web search
engines (e.g., Lycos, Yahoo, Altavista) and metasearch tools (e.g.,
MetaCrawler, IBM’s InfoMarket) are examples of information
discovery systems (Dreilinger, D. and Howe, A., 1997). The major
limitations of information discovery systems are (Konopnicki, D.
and Shmueli, O., 1995):

• They do not support structured queries (e.g., SQL-like
queries). Query capabilities are limited to content-based
expressions (e.g., keywords, sentences, combination of
keywords) where returned results usually lack precision.

• They lack abstractions (e.g., database schemas, ontologies)
for describing the semantics and organization of information
sources. This makes any effective use of available
information sources enormously complex.

SQL-like languages for the Web feature support for content and
topology-based queries. Examples of such languages include
W3QL (Konopnicki, D. and Shmueli, O., 1995) and WebSQL
(Mendelzon, A. O., Mihaila, G. A., and Milo, T., 1996). They use
graph-based models to represent Web accessible documents. Other
efforts, such as ARANEUS (Atzeni, P., Mecca, G., and Merialdo,
P.,1997) and STRUDEL (Fernandez, M., Florescu, D., Kang, J.,
Levy, A., and Suciu, D. , 1998), investigated the generalization of
these languages to support structured queries. The underlying
models provide constructs to describe both the inner structure of
Web documents and their hyperlinks. However, these languages
provide little support for organizing, integrating, and querying large
numbers of dynamic, heterogeneous, and distributed information
sources.

Data Integration

Interoperability among loosely coupled and tightly coupled systems
has been an active research over the past 20 years. In traditional
data integration approaches, the development of an integrated

schema requires the understanding of both the structure and
semantics of all database schemas (Bouguettaya, A., Benatallah, B.,
and Elmagarmid, A., 1998). These approaches are usually
acceptable when integrating a small number of non-varying
numbers of heterogeneous databases (Ozcan, F., Nural, S., Koskal,
P., Evrendilek, C., and Dogac, A., 1997). Interoperability in Web
environments requires more flexible and scalable solutions. The
volume of information is very large, information formats are more
diverse (e.g., XML, HTML, tabular data), and information space is
highly dynamic and distributed.

There is a large body of relevant literature on extracting,
integrating, and querying Web data (Florescu, D., Levy, A., and
Mendelzon, A., 1998). Web-accessible information sources can be
structured (e.g., relational database), semi-structured (e.g., XML
and HTML documents), or unstructured (e.g., text files). Survey
reports on Web information integration approaches can be found in
(Kashyap, V., 1997; Florescu, D., Levy, A., and Mendelzon, A.,
1998; Bouguettaya, A., Benatallah, B., and Elmagarmid, A. 1998).
Current Web data integration approaches propose some interesting
capabilities in data extraction (e.g., semiautomatic generation of
wrappers), translation, and mediation. An example is the Object
Exchange Model (OEM) proposed in the TSIMMIS project (Garcia-
Molina, H. et al., 1997). OEM is a self-describing data model
where data can be parsed without reference to any external schema.

Another example of extensions to multidatabase techniques is
the flexible query processing technique proposed in the DISCO
project (Tomasic, A., Amouroux, R., Bonnet, P., Kapitskaia, O.,
N., H., and Raschid, L., 1997a). DISCO provides support for
unavailable information sources and transparent addition of new
information sources. Query evaluation takes into consideration
partial answers. Other efforts in this area, that include InfoSleuth
(Bayardo, R. et al. 1997) and OBSERVER (Mena, E., Kashyap, V.,
Illarramendi, A., and Sheth, A., 1998), use agents and ontologies.
They feature the use of pre-existing domain specific ontologies to
define the terms in each data source. Users formulate their queries

using terms of a selected ontology (local user ontology).

ORGANIZING AND MODELING WEB-
ACCESSIBLE DATABASES

In a highly dynamic and large network of databases accessible via
the Web, there is a need for a meaningful organization and
segmentation of the information space. In WebFINDIT, the
information space is partitioned into domain-specific communities.
Databases join and leave a given community based on their needs
and domains of interest. In this section, we present the core
concepts of the WebFINDIT approach: database communities,
community relationships, and database registration.

Database Communities

Each database community is specialized in a single area of interest.
It provides domain-specific information (e.g., domain keywords
and domain attributes) for interacting within the community and its
underlying databases. Database communities provide means for an
ontological organization of Web-accessible databases. Such an
organization aims at reducing the overhead of discovering
databases over the Web. Our approach breaks away from
conventional multidatabase systems assumption that database
schemas must be a priori integrated into a global schema. We
argue that the first step in querying Web databases ought to be the
discovery of relevant databases. Thus, an appropriate segmentation
of the information space has the advantage that the number of
potential interactions is restricted.

Figure 1 illustrates the clustering of databases into communities
for a healthcare application. It shows sixteen databases grouped
into four communities (Research, Medical, Insurance, and
Superannuation). For example, all databases that contain
insurance-related data are members of the Insurance

community. The same database may belong to several communities
if it deals with different domains of interest. For example, the
Qld Cancer Fund database is member of Medical and
Research communities.

Figure 1. Database Communities

The definition of a community includes the domain name,
synonyms, and attributes. The domain name is a string that
represents the identifier of the community. Synonyms provide
alternative names of each domain. They can be used to locate
databases that provide information about the associated domain.
Domain attributes constitute a schema that can be used to query the
members (i.e., databases) of the community. It should be noted
that the domain attributes are described without referring to local
database schemas. For example, part of the definition of the
Insurance community is:

 Community Insurance {
 Domain Insurance;
 Synonyms { Health Coverage, Social Security,
 Medical Expenses} ;
 Schema Insurance_Schema;

 }

A subset of the attributes of the schema Insurance_Schema
(i.e., domain attributes) is:

 Community Schema Insurance_Schema {
 Attribute String Coverage_Type;
 Attribute String Restrictions;
 Attribute Double Maximum_Amount;

 }

Community Relationships

Databases within a community are organized using a specialization
relationship. For example, Medical Research is a sub-
community of Research. A community may have several sub-
communities but at most one super-community. Thus, a database
community is represented as a tree. The nodes forming the
community tree support each other in answering queries forwarded
to them. If a query scope conforms to the domain of a given sub-
community, then the query will be forwarded to it.

Communities are not isolated entities: they can be related to
each other by inter-community relationships. Inter-community
relationships may be viewed as a simplified way to share
information with low overhead. They constitute the resources that
are available to a community to answer requests that cannot be
handled locally. They also represent domain proximity
relationships between database communities. Inter-community
relationships are used to provide a peer-to-peer topology for
connecting communities with overlapping domains. This topology

ensures that if a community cannot process a given request, the
request is forwarded to a linked community for possible resolution.

In addition to the domain name, synonyms, and attributes, the
definition of a community includes Sub-Communities and Inter-
Community Relationships elements. The following example shows
the description of these elements in the definition of the community
Medical Research.

 Community Medical Research {
 Super-community Research;
 Inter-Community Relationships {Medical} ;

 }

The community Medical Research is a sub-community of
the community Research. It also has an inter-community
relationship with the community Medical (Figure 1).

Database Registration

To become accessible from a given community, a database needs to
be registered with that community. The registration of a database
consists of providing the following elements:

• Exported view of the database schema: It defines attributes
that can be used to query the database. It should be noted that
different databases might use different local data models (e.g.,
relational, object-oriented) to describe their local schemas.
However, exported views must be defined using the
WebFINDIT data model (object-based).

• Wrapper: It translates WebFINDIT queries to local queries
expressed using the database native query language. The
outputs produced in response to local queries are translated
into the format used by WebFINDIT.

• Mapping: This element allows specifying the mappings
between the exported view and community schema. As
pointed out, the schema of a community is defined without

directly referring to any database schema. Therefore, when a
database is registered with a community, the database
provider must define a mapping between the exported view
and community schema. We call this mapping database-
community mapping. The database-community mapping is
used to translate a query that is expressed using a community
schema into a set of queries spanning individual databases.

• Documentation: It provides a human-understandable
summary description of the content and capabilities of a
database. Documentation may also be associated with a
community.

In our healthcare application, Royal Brisbane
Hospital (RBH in short) is a member of the community
Research. The registration of RBH with Research is as
follows:

 Register Database RBH {
 Community Research;
 Exported View RBH_View;
 Wrapper “http://www.nvc.cs.vt.edu/WWD-QLOracle” ;
 Database-community Mapping RBHtoResearch;
 Documentation “http://www.nvc.cs.vt.edu/RBHDoc”;
 }

The exported view RBH_View and mapping RBHtoResearch
are:

 Exported View RBH_View {
 Attribute String ProjectDescription;
 Attribute Double AllowedAmount;

 }

 Database-community Mapping RBHtoResearch {
 Source RBH;
 Target Research;
 Attribute String ProjectDescription IS
 Research.Topic;
 Attribute Double AllowedAmount IS
 Research.Funding;

 }

In this example, the URL “http://www.nvc.cs.vt.edu/RBHDoc”
contains documentation about RBH database. The URL
“http://www.nvc.cs.vt.edu/WWD-QLOracle” contains the wrapper
needed to access RBH. The exported view RBHView defines two
attributes: ProjectDescription and AllowedAmount. The mapping
RBHtoResearch specifies that the attribute ProjectDescription
(respectively, AllowedAmount) in RBHView corresponds to Topic
(respectively, Funding) in the schema of the community
Research.

ADVERTISING AND QUERYING
DATABASE COMMUNITIES

An important issue to consider in the Web, is how to efficiently
query the potentially vast amount of available databases. For this
purpose, we advertise databases and communities in meta-data
repositories. We also define a declarative language, called the
World Wide Database Query Language (WWD-QL), for querying
information communities and their databases.

Meta-data repositories

Meta-data repositories contain information that describes the
meaning, domain, content, capabilities, and location of databases.
To avoid the problem of centralized administration, meta-data

repositories are distributed over the information network. Each
database has a meta-data repository attached to it. A meta-data
repository is an object-oriented database that stores information
about its associated database and related communities. The schema
of the meta-data repository contains a specific class, called
WebDatabase, which describes general information about the
associated database including the location, wrapper,
documentation, local query language, and local DBMS. The meta-
data repository contains also information about the communities
that the database is member of. A subset of the attributes of the
class WebDatabase is:

 Class WebDatabase {
 Attribute Set (Community) Communities;
 Attribute URL Location;
 Attribute URL Documentation;
 Attribute URL Wrapper;
 Attribute String DBMS;
 Attribute String Query-language;

 }

The attribute Communities contains references to objects that
represent communities of which the database is member. A subset
of the attributes of the class Community is:

 Class Community {
 Attribute String Domain;
 Attribute Set (String) Synonyms;
 Attribute Community Super-community;
 Attribute Set (WebDatabase) Members;

 }

Querying Database Communities

The WWD-QL language uses meta-data to locate, browse, and
query communities and their underlying databases. This language

combines SQL-like and information retrieval boolean constructs.
WWD-QL is designed to query (meta) data over the Web. WWD-
QL differs from traditional query languages in that it operates in a
large and highly dynamic network of heterogeneous databases.
Since the unit of information sharing is the type, this query
language is able to query the system at two levels:

• Meta-data level: Queries in this category allow the
exploration of the available information space, database
location, etc. WWDL-QL provides primitives for educating
users about the available information space, locating
communities and databases based on constraints over their
meta-data. Examples of queries include, get communities that
are relevant to the topic Research, get sub-communities of
the community Research, get communities which overlap
with the community Research, get members of the
community Medical Research, display documentation
about a specific community or database, and get schema of a
specific community or exported view of a database.

• Data level: After locating relevant communities and
understanding their content, users may be interested in
querying data stored in the underlying databases. Users may
use a community to express queries that require extracting
and combining data from multiple members (i.e., databases).
We refer to this type of queries as global queries. A global
query is expressed using a community schema. It is translated
into a set of queries to relevant members using the associated
database-community mappings and wrappers. Users have
also the options to query databases directly. In this case, the
query is either expressed using the exported view of the
database or embedded in the native query language of the
database (e.g., SQL).

MONITORING AND MAINTAINING
INTER-COMMUNITY RELATIONSHIPS

The dynamic evolution of inter-community relationships is
facilitated by means of community monitoring agents. Agents are
software components characterized mainly by their autonomy and
adaptiveness (Nwana, H. S. and Ndumu, D. T., 1997). These
characteristics are of prime importance in allowing adaptive inter-
community relationships in WebFINDIT. Each database
community has a monitoring agent associated to it. Monitoring
agents contain operational knowledge such as inter-community
relationships, their usage statistics, and control policies related to
the evolution of inter-community relationships.

Creating and deleting inter-community relationships

We now discuss the creation and deletion of inter-community
relationships. The creation of a new inter-community relationship
may be beneficial to avoid navigation through communities that are
constantly used as bridges between other communities. The
deletion of an existing inter-community relationship may be
beneficial to reduce the number of stale links. Stale links are inter-
community relationships that have no useful purpose.

Creating inter-community relationships. Figure 2 illustrates a
scenario where a new inter-community relationship is created. In
this scenario, the community Research has an outgoing inter-
community relationship with Medical, which in turn has
outgoing inter-community relationship with Insurance. Assume
that during the execution of the system, the monitoring agents of
the previous communities report the following: The majority of
users who start their query session from Research and traverse
the inter-community relationship between Research and
Medical, do not initiate queries on the community Medical.
Rather they use Medical as a bridge to go to Insurance where

they initiate their queries. In this case, the monitoring agent of
Research would recommend the creation of a new inter-
community relationship from Research to Insurance. This
would allow users to navigate directly from Research to
Insurance and reduce the number of traversed nodes to reach
relevant communities.

Insurance

M edical

Research

(1) (2)

Star t

Create a new inter -
community relationship

M edical

Research Insurance

Figure 2. Creation of an Inter-community Relationship

Deleting inter-community relationships. If an inter-community
relationship between two database communities is rarely used or
always leads to a non-relevant community, then it is most likely to
be stale. The related agent would recommend its deletion.
Consider the example of Figure 3. The community Medical has
an outgoing inter-community relationship with the community
Insurance which in turn has an outgoing inter-community
relationship with the community Superannuation. Medical
has another outgoing inter-community relationship with
Superannuation. Assume that the monitoring agents of the

previous communities report the following: The majority of users
who navigate directly from Medical to Superannuation
ultimately leave Superannuation without performing any
query. This may suggest that the direct link between Medical
and Superannuation does not seem to be too beneficial. In
this case, the monitoring agent of Medical would recommend the
deletion of the inter-community relationship between Medical
and Superannuation.

Insurance

M edical Superan.

Star t

Delete a stale inter -
community r elationship

M edical

Insurance

Superan.

Stale relationship

Figure 3. Deletion of an Inter-community Relationship

Monitoring Inter-community Relationships Navigation

Community monitoring agents primarily keep track of user’s
navigation over the different inter-community relationships. Each
inter-community relationship will be characterized by a number of
parameters (e.g., number of times an inter-community relationship
is traversed) continually gathered by the associated agent. Based

on these parameters, monitoring agents may recommend the
creation or deletion of inter-community relationships. In a
nutshell, community agents monitor traffic over inter-community
relationships and record final destinations of navigation sessions
through these relationships. Each agent gathers and stores statistics
about all outgoing and incoming inter-community relationships of
its associated community. It may also query remote agents about
the statistics they gathered so far.

Inter-community relationship navigation statistics. For each
inter-community relationship, the associated monitoring agent
gathers the following statistics: (i) The number of times the
relationship has been traversed, (ii) The number of times the
relationship leads to a final destination, and (iii) the number of
times the relationship leads to a non-final destination.

A community is considered as a final destination of an inter-
community relationship if users submit queries (i.e., global or local
queries) to that community. It is considered as a non-final
destination when users do not submit queries to it. In this case,
users follow other inter-community relationships, backtrack to the
source community (if there is an inverse inter-community
relationship), or leave the system. An agent can also query other
agents about final destinations navigation through a given inter-
community relationship.

Change recommendations. Agents can be queried by community
administrators to get information about inter-community
relationships usage. They are also programmed to periodically
notify information about inter-community relationships usage. The
results of queries to a monitoring agent may consist of
recommendations to create or delete inter-community relationships.

A monitoring agent reports that an inter-community
relationship is stale (and hence recommends its deletion) if the
value of a specific parameter, called DP (Deletion Parameter), is
less than a certain threshold (e.g., 20%). The threshold is

predefined by community owners or administrators. DP is
obtained using the following ratio:

• DP= Number of times an inter-community relationship led
to a final destination/Number of times this relationship was
traversed.

A monitoring agent will confirm that a new inter-community
relationship is worth creating if the value of a specific parameter,
called CP (Creation Parameter), is greater than a certain threshold
(e.g., 80%). CP is computed using the following formulae:

CP = A * B where:

• A = Number of times an inter-community relationship was a
non-final destination / Number of times this relationship was
traversed.

• B is the DP of the final destination. It is obtained by
querying the agent associated with that destination.

If the value of CP is greater than a pre-defined threshold, then
the agent recommends the creation of a new inter-community
relationship between the starting community and the final
destination.

WebFINDIT IMPLEMENTATION

This section presents the overall architecture of WebFINDIT. This
architecture adopts a client-server approach to provide services for
interconnecting a large number of distributed, autonomous and
heterogeneous databases. At the communication layer WebFINDIT
integrates major middleware technologies such as CORBA, DCOM,
EJB, and RMI. Database gateways such as JDBC and ODBC are
used to access databases. Monitoring agents are implemented
using Voyager 2.0, an agent-enhanced Object Request Broker
(ORB). Voyager supports agent mobility. It is among the very few

agent platforms that support full native CORBA IDL, IIOP and bi-
directional IDL/Java conversions.

Architecture

The WebFINDIT components are grouped into four layers
(Figure 4): query layer, communication layer, meta-data layer, and
data layer.

D ata
Layer

M eta-data
Layer

Q uery
Layer

C om m unication
Layer

Distr ibuted
Object Servers

Query
Processor Browser

Internet

M eta-data
Reposi tor ies

Wrappers

Databases

Figure 4. WebFINDIT Layers

Query layer. This layer provides users access to WebFINDIT
services. It allows users to browse, search, and access communities
and databases using graphical and text queries. This layer contains
two components: user interface and query processor.

Communication Layer. This layer manages the interaction
between WebFINDIT components. It mediates requests between
the query processor and meta-data/database servers. This
component is implemented using a network of communication
middleware including CORBA, EJB, DCOM, and RMI.

Meta-data Layer. This layer consists of a set of meta-data

repositories. Each repository stores meta-data about the associated
databases (i.e., locations, wrappers, communities, etc). Meta-data is
stored in ObjectStore databases.

Data Layer. This layer has two components: databases and
wrappers. The current version of WebFINDIT supports relational
(mSQL, Oracle, Sybase, DB2, and Informix) and object oriented
databases (ObjectStore). A wrapper provides access to a specific
database server.

Prototype

Figure 5 depicts details of the WebFINDIT architecture using a
healthcare application. As a proof of concept, seventeen databases
along with their respective meta-data repositories (total of 34
databases) have been used. Host operating systems are Unix (Sun
Solaris) and Windows NT. Different distributed object middleware
have been used to interconnect databases: three CORBA ORBs
(Visibroker, Orbix, and OrbixWeb), two Sun RMI servers, one
WebLogic EJB server, and one Microsoft DCOM server.

Access to WebFINDIT’s databases is handled by the query
processor. The query processor provides access to databases via
JDBC for relational databases in Unix platforms, ODBC for
databases on NT machines, and C++ method invocations for
object-oriented databases. All meta-data repositories are
implemented using ObjectStore. The use of an object-oriented
database was dictated by the hierarchical structure of the schema
associated to meta-data repositories. We used four CORBA Orbix
ORBs to represent the existing communities. A fifth ORB was
added for meta-data repositories associated to databases that do not
belong to any community. Each meta-data repository is registered
to a given ORB through a CORBA object wrapper.

Figure 5. Detailed WebFINDIT Architecture.

The agent contractor informs monitoring agents (implemented
in Voyager 2.0) when users move from one community to another.
One monitoring agent is associated to each database community. It
stores information about destinations of all outgoing and incoming
inter-community relationships. This information makes it possible
for the agents to determine the usefulness of inter-community
relationships. Database administrators are presented with the
results obtained by community agents.

A sketch of the algorithm executed by monitoring agents is
presented in the following. The function BuildStatistics is executed
by each agent in collaboration with the contractor. Monitoring
agents update their statistics (stored in mSQL databases) under the
control of the agent contractor, since it is the only component that
knows when users traverse an inter-community relationship. The
function EvaluateStatistics is executed by relevant agents. The
timeframes (weekly, monthly, half-yearly, yearly) determine the

frequency to perform evaluation on each inter-community
relationship. Timestamps are used to determine whether a
timeframe has elapsed.

Function BuildStatistics /* Executed by each agent, with help from
the agent contractor * /

Begin
- Record the number of traversals for each inter-community

relationship
- Determine whether a destination community is the final/non-

final destination as far as the relationship is concerned
End

Function EvaluateStatistics /* Executed by each agent * /
Begin

From the first to the last entry in the statistics
Do

- Look at the timeframes chosen by the user, if any of them
has elapsed

- Determine whether the entry is a stale relationship
- Determine whether the entry produces a new relationship

If the entry produces a stale or new relationship
Then present the agent’s recommendation to the

system administrator
End

CONCLUSION

WebFINDIT provides a framework that fosters Web data
integration in a scalable and adaptive way. It proposes an
incremental and self-documenting approach to share Web data.
The system processes users’ queries in two steps: (i) querying
meta-data for communities location and semantic exploration, and
(ii) querying selected databases for actual data. Since scalability

and flexibility are of great importance in Web-based environments,
our integration framework features appropriate abstractions. First,
the community-like organization and segmentation of the
information space in meaningful subspaces makes database search
and sharing more efficient. The descriptions of communities allow
querying Web-accessible databases without knowing their
schemas. Second, inter-community relationships are established to
allow query migration among communities. If a query cannot be
resolved in the local community, it is forwarded to relevant
community through an inter-community relationship. Third, inter-
community relationships are dynamically maintained by
monitoring agents. Monitoring agents collect statistics about
relationship usage to suggest the creation or removal of inter-
community relationships. A working prototype is fully operational
and available online (http://www.nvc.cs.vt.edu/~project).

We are currently investigating the use of WebFINDIT to access
digital government databases (Bouguettaya, A., Ouzzani, M.,
Medjahed, B., and Cameron, J., 2001). We are collaborating with
the Family and Social Services Administration (FSSA), a
government agency providing social services to needy families and
citizens. We are also leveraging WebFINDIT to provide seamless
integration of Web Services (i.e., modular applications that are
programmatically accessible via the Web) and data into one
uniform architecture (Benatallah, B., Medjahed, B., Bouguettaya,
A., Elmagarmid, A., and Beard, J., 2000). Another on-going work
is to use XML (eXtensible Markup Langugage), the de facto
standard for data representation and exchange on the Web, to
support meta-data repositories.

Acknowledgment: The first author’s work was in part supported
by an NSF grant number 9983249-EIA.

REFERENCES

Atzeni, P., Mecca, G., and Merialdo, P. (1997). Semistructured
and Structured Data in the Web: Going Back and Forth. ACM
SIGMOD, 26(4).

Bayardo, R. et al. (1997). InfoSleuth: Agent-Based Semantic
Integration of Information in Open and Dynamic Environments.
ACM SIGMOD International Conference on Management of Data,
Tucson, Arizona, USA.

Benatallah, B., Medjahed, B., Bouguettaya, A., Elmagarmid,
A., and Beard, J. (2000). Composing and Maintaining Web-based
Virtual Enterprises. VLDB Workshop on Technologies for Web
Services, Cairo, Egypt.

Bouguettaya, A., Benatallah, B., and Elmagarmid, A. (1998).
Interconnecting Heterogeneous Information Systems. Kluwer
Academic Publishers.

Bouguettaya, A., Benatallah, B., Hendra, L., Ouzzani, M., and
Beard, J. (2000). Supporting Dynamic Interactions among Web-
based Information Sources. IEEE Transactions on Knowledge and
Data Engineering, 12(5).

Bouguettaya, A., Ouzzani, M., Medjahed, B., and Cameron, J.
(2001). Managing Government Databases. IEEE Computer, 34(2).

Bowman, C., Danzig, P., Schwartz, U. M. M., Hardy, D., and
Wessels, D. (1995). Harvest: A Scalable, Customizable Discovery
and Access System. Technical Report, University of Colorado,
Boulder, USA.

Dreilinger, D. and Howe, A. (1997). Experiences with
Selecting Search Engines Using Metasearch. ACM Transactions on
Information Systems, 15(3).

Fernandez, M., Florescu, D., Kang, J., Levy, A., and Suciu, D.
(1998). Catching the Boat with Strudel: Experience with a Web-site

Management System. ACM SIGMOD International Conference on
Management of Data, Seattle, Washington, USA.

Florescu, D., Levy, A., and Mendelzon, A. (1998). Database
Techniques for the World-Wide Web: A Survey. ACM SIGMOD
Record, 27(3).

Garcia-Molina, H. et al. (1997). The TSIMMIS Approach to
Mediation: Data Models and Languages. Journal of Intelligent
Information Systems, 8(2).

Gudivada, V., Raghavan, V., Grosky, W., and Kasanagottu, R.
(1997). Information Retrieval on the World Wide Web. IEEE
Internet Computing, 1(5).

Kashyap, V. (1997). Information Brokering over
Heterogeneous Digital Data: A Metadata-based Approach. PhD
thesis, New Brunswick, The State University of New Jersey, USA.

 Kim, W. and Seo, J. (1991). Classifying Schematic and Data
Heterogeneity in Multi-base Systems. IEEE computer, 24(12).

Konopnicki, D. and Shmueli, O. (1995). W3QS: A Query
System for the World Wide Web. International Conference on Very
Large Data Bases, Zurich, Switzerland.

Mena, E., Kashyap, V., Illarramendi, A., and Sheth, A. (1998).
Domain Specific Ontologies for Semantic Information Brokering
on the Global Information Infrastructure. International Conference
on Formal Ontologies in Information Systems, Trento, Italy.

Mendelzon, A. O., Mihaila, G. A., and Milo, T. (1996).
Querying the World Wide Web. International Conference on
Parallel and Distributed Information Systems, Florida, USA.

Nwana, H. S. and Ndumu, D. T. (1997). An Introduction to
Agent Technology. Lecture Notes in Artificial Intelligence,
Springer Verlag, 1198.

Ozcan, F., Nural, S., Koskal, P., Evrendilek, C., and Dogac, A.
(1997). Dynamic Query Optimization in Multidatabases. IEEE
Data Engineering, 20(3).

Tomasic, A., Amouroux, R., Bonnet, P., Kapitskaia, O., N., H.,
and Raschid, L. (1997a). The Distributed Information Search
Component (Disco) and the World Wide Web. SIGMOD Record,
26(2).

Tomasic, A., Gravano, L., Lue, C., Schwarz, P., and Haas, L.
(1997b). Data Structures for Efficient Broker Implementation.
ACM Transactions on Information Systems, 15(3).

