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Abstract

In this paper, we describe an intelligent signal analysis system employing the
wavelet transformation towards solving vehicle engine diagnosis problems.  Vehicle
engine diagnosis often involves multiple signal analysis.  The developed system first
partitions a leading signal into small segments representing physical events or stateds
based on wavelet mutli-resolution analysis.  Second, by applying the segmentation result
of the leading signal to the other signals, the detailed properties of each segment,
including inter-signal relationships, are extracted to form a feature vector.  Finally a
fuzzy intelligent system is used to learn diagnostic features from a training set containing
feature vectors extracted from signal segments at various vehicle states.  The fuzzy
system applies its diagnostic knowledge to classify signals as abnormal or normal.  The
implementation of the system is described and experiment results are presented.

1. Introduction

Today’s vehicles are becoming more and more complex with increased reliability
on electronics and on-board computers.  As a result, fault diagnosis on these vehicles has
become increasingly challenging with a greater number of parts and controllers
interacting in a large number of complex and, sometimes, poorly understood ways.
Correspondingly, the job of vehicle diagnosis has become more difficult, especially for
non-routine faults.  Often, technicians cannot even pinpoint the root cause of a difficult
fault and find themselves replacing parts in the hope that the given part is the source of
the problem.  This “throwing parts at the vehicle” approach increases car manufacturer
warranty costs and leads to dissatisfied customers.  Therefore car manufacturers are
finding it necessary to develop a new breed of electronic diagnostic technology that can
help lead quickly to the root cause of a vehicle fault.

During the1980s, the rapid introduction of electronic engine management
techniques greatly improved the performance of the vehicle engine, while, conversely,
making engine diagnosis the most difficult part of vehicle diagnosis.  Vehicle diagnosis
tools and techniques can be divided into three classes [7]:

1. On-board diagnostic software and self test routines. An Electronic Control Unit’s
(ECU) software may incorporate self-test routines that can store the fault code when a
fault is detected.

2. On-board diagnostic data accessed using an off-board diagnostic tool. When a vehicle
is inspected, a scanner or a scan tool can be connected to the diagnostic terminal of
the on-board computer.  These tools can either simply collect fault codes from the
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ECU self test, or they can record continuous signal outputs from the on-board vehicle
sensors during driving.

3. Off-board diagnostic stations. These tools combine data downloaded from the vehicle
ECU and sensors with off-board diagnostic sensors more sophisticated than are
available on the vehicle.  Again, the technician is left with the full responsibility of
interpreting the data.

There are several limitations to on-board diagnostics. First, on-board software
must be integrated with vehicle specific hardware, which means different vehicles cannot
share the same software or diagnostic methods. Second, the error codes provided by the
on-board software do not provide enough details regarding the fault to allow diagnosis.
Third, the knowledge stored in the system is fixed unless the manufacturer updates it with
costly replacements. Finally, because of the limited computing resources of a vehicle
(slow processor and less information storage space), it's difficult to do much more than
limit checking type diagnostics.  Advanced signal analysis techniques such as signal
transformations or machine learning techniques are not available. With the rapid
development of the CPU and signal processing, off-board diagnostic techniques are more
promising than on-board diagnostics. Standards are in place (ISO 9141) for the data link
from the on-board computer to the off-board unit, so data can be collected from the ECU
and analyzed off-line by powerful computers. Unfortunately, at this time, diagnostic
techniques lag far behind data collection techniques.

Vehicle diagnosis techniques can be divided into two classes: model-based and
model-free.  Model-based techniques employ mathematical models of the dynamics of
the vehicle components to analyze the behavior of vehicle systems [2, 10, 12]. While
these models may useful for examining simplified versions of each of the engine
components, we do not have accurate models for a real vehicle with many interactive
components.

Model-free systems are knowledge-based, incorporating professional knowledge
from engineers without exact information regarding the details of system dynamics. The
rationale behind this approach is that many experienced technicians can find faults even
though they do not have extensive knowledge of the mechanical or electrical dynamics of
the vehicle. Examples of such system  include Strategy Engine (HP), TestBench
(Carnegie Group), IDEA (Fiat Research Centre) and MDS (Daimler-Benz Research)
[25].

 In this paper, we describe an off-board and model-free diagnostic system for
identifying faulty vehicle behavior through analysis of ECU signals. The signals
discussed here come from the Powertrain Control Module (PCM) of the ECU, however,
the methods developed are sufficiently general to allow for use in other multi-signal fault
diagnosis problems.

In a tightly coupled system such as a vehicle powertrain, inputs and outputs from
every component effect most of the other components of the system.  For example, the
driver pressing the throttle causes an increase in the airflow to the engine.  The PCM
changes the control strategy modifying fuel delivery and spark timing.  Increased fuel and
air increases RPM, which, in turn, dramatically changes the behavior of the transmission
and other components such as alternator output.  Furthermore, there are feedback loops in
the system.  The on-board controller monitors output exhaust quality, gear changes and
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airflow changes further modifying system behavior to keep performance at a maximum
and exhaust pollution at a minimum.  Outside factors such as road quality, road gradient,
vehicle weight, active accessories, etc provide physical feedback to the system further
altering behavior.

In our system, we capture these physical events and dependencies through the
powertrain signals. For example, figure 1(a) demonstrates a simplification of the
relationship between the TP (Throttle Position) and RPM (Revolution Per Minute)

signals.  TP makes a sudden
rise and fall while RPM
mimics this behavior but
more smoothly.  This
simplification is not
completely accurate but
demonstrates the key point
that important physical
relationships can be seen
through the vehicle signals.
Figure 1(b) shows a more
typical set of relationships
between four different
signals.  Each circle is a
signal and each edge indicates
a feature that the tail signal
influences in the head signal.
These relationships are often
complex, include 5-10
different important signals,
and have many cyclic
dependencies between
signals.

We note several important issues related to using signals to diagnose a vehicle.
First, we must differentiate between a bad signal and bad vehicle behavior reflected in the
signal.  A bad signal is generally caused by a bad PCM or a bad sensor.  Bad vehicle
behavior can be caused by any of a number of factors, physical or electronic.  Our system
detects signal features that indicate bad vehicle behavior, whether it is caused by bad
electronic parts or physical faults.  Second, we note that not all of the physical
dependencies present in the actual vehicle can be modeled with corresponding signals.
For instance, there is no signal to indicate road bumpiness, a physical factor that can
effect vehicle and, therefore, signal behavior.  To handle these unknown conditions we
train with vehicle data in several conditions while avoiding extreme driving conditions
(e.g. off-road racing).   Finally, the same signals are not available from all vehicles.
When considering behavior that depends on signal relationships, this can lead to an
inability diagnose certain faults that depend on information present in the missing signal.

In this paper we focus on developing techniques of decomposing multiple signals,
diagnostic feature extraction, and intelligent diagnosis.  The paper is organized as
follows.  In section 2 we briefly introduce the diagnostic system. In section 3, an
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Figure 1: In multiple signal systems, changes in one signal generally result in
changes in one or more other signals.  In (a) signal B is the smoothed version of
signal A, a simple relationship.  In (b) each edge is indicating the feature the
signal at the tail end is causing in the signal at the head end.  Notice that  each
signal effects and is effected by multiple different signals.
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automatic segmentation algorithm based on wavelet multi-resolution analysis is
introduced.  In section 4 we discuss how we can process and combine feature and
segment information to form feature vectors suitable for input into a machine learning
system.  Section 5 describes how a fuzzy-based machine learning system can be used to
learn good and bad signal behavior.  Section 6 describes the implemented diagnostic
system and the encouraging experimental results we’ve obtained.  Finally, section 7
discusses the impact of our work thus far and our future goals for this research.
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2. System overview

The system we have developed is a multi-layered diagnostic system (see Figure
2).  Here we present a brief overview of each layer and its goals.  Layers 2, 3 and 4 are
discussed in more detail in later sections.  Layers 1 and 5 are discussed only briefly.

The first layer translates the data into a format suitable for processing. This layer
is relatively simple and is not discussed further.

The second layer automatically partitions the signal into segments using either
wavelet features from that signal or the segments of another signal.  Figure 3 shows a TP

1. Data Translation Layer
Translates data from some external format to

the internal format used by our system

2. Segmentation Layer
Segments the signals into sections corresponding

to physical vehicle states (e.g. acceleration, idle, etc)

3. Feature Vector Construction Layer
Generates a vector of features for each segment of a signal.  Each vector element is a number such as

wavelet or Fourier coefficient energy that represents some feature of the signal.

4. "Super" Vector Construction Layer
Generates a super vector of features from a primary signals and its reference signals.

This super vector may also include features from previous segments to support time dependencies.

5, Machine Learning Layer
Uses Machine learning system such as a fuzzy system or a neural network to analyze the super vectors

generated by the previous layer and label them as good, bad or unknown.

External Vehicle data

TP
Signal

RPM
Signal

SPARKADV
Signal

TP
Segments

RPM
Segments

SPARKADV
Segments

TP
Feature
Vector

RPM
Feature
Vector

SPARKADV
Feature
Vector

TP
Super
Vector

RPM
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Super
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Uknown
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Uknown

 Figure 2: Diagram of the proposed diagnostic system.  Each layer handles different signals
individually thus enabling the diagnosis of each signal to be customized.
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signal that has been segmented using this module.  These segments have three purposes.
First, they divide the signal into regions that relate to some physical vehicle state, for
example, acceleration or idle. If we know the general physical state of the vehicle we can
eliminate many possible faults and behaviors that we know cannot occur in the given
physical state. Second, segmentation leads to a natural clustering of the signal data.
Signal behavior within a given segment is generally very similar to behavior in other
segments of the same state.  This leads to more consistent training and test data.  Third,
using the segments we can isolate fault location within a signal.  This can lead to easier
fault identification.  Finally, the segmentation strikes a nice balance between analyzing
the original signal as a whole, which would result in enormous amounts of superfluous
data, and analyzing the signal in one piece, which would result in a very complex feature
vector.  Segmentation allows us to examine important details of the signals without
overloading the system with data.

The third layer extracts features from each segment and combines these features
into a feature vector compatible with the machine learning system.  These feature vectors

highlight important aspects of the segments that can be used to define good and bad
behavior.  For example, we may want to look at the “noise” in the signal, the rate of
change within a segment or the motion pattern.  To extract this information in a compact
form we use advanced signal processing techniques including wavelet and Fourier
transforms as well as statistical data regarding the signal itself.  From the transformation
coefficients and the statistical data we choose, for each signal, the data elements that best
represent the given signal’s features.  Finally, we compose our feature vector from this
data.  Figure 4 shows examples of feature vectors extracted from the TP signal shown in
Figure 3.

Figure 3: An example of segmentation on the Throttle Position (TP) signal.  In ADSAS, the segment
lines are color-coded to indicate the beginning of acceleration (rising), cruise (steady high), deceleration
(falling) and idle (steady low) segments.  The segmentation was done automatically by our system,
ADSAS (see Experiments).
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The fourth layer introduces the notion of time and signal dependency into the
system.  In this layer, we choose a primary signal for analysis and select a set of reference
signals that have some causal relationship with a given primary signal.  We then combine
the features of our primary signal with selected features from the reference signals to
form a “super feature vector.” This super feature vector may also include features from
previous segments, thus incorporating time dependency into the system.  For example, as
mentioned earlier, an RPM rise is generally caused by a similar rise in TP.  Furthermore,
because of physical inertia, behavior of RPM in one segment is usually very closely tied
to the behavior in the immediately previous segment.  Thus we create a super feature
vector for RPM that contains RPM’s features for the current and previous segment along
with the state of the TP signal (increasing -acceleration, decreasing - deceleration, stable
– cruise/idle, etc).  A machine learning system can use this information to differentiate
between RPM signals that react normally to TP and those that do not.

The fifth and final layer consists of a machine learning system. The machine
learning system is trained to recognize faults from one type of signal at a time, which
results in separate knowledge bases for each signal type.  Currently, we use a fuzzy
learning system, but this layer can be generalized to neural networks or other suitable
machine learning systems.  Each of the super vectors produced in layer 4 is fed into the
learning system for training.  At this time the training is supervised so we provide a target
output that the system attempts to match.  We note that, as with many complex diagnosis
problems, we often don’t have many verified “bad” data samples so we mainly train with
good samples.

The following three sections discuss each of the layers 2-4 in more detail.

Figure 4: Example of a few of the features extracted from  the TP signal shown in figure 3.  Start and end indicate the beginning and
ending sample of the segment.  States are 0-3 indicating idle, acceleration, cruise and deceleration respectively.  F: [4.00; 20.0] is the
energy of the Fourier coefficients over the frequency range 4-20 Hz for the given segment.  Minimum, maximum and average are
calculated on the original signal.  The WE_DB1 Ln columns are the energy of the DB1 (i.e. Haar) wavelet detail coefficients at the
nth level over the given segment. (Taken from Adsas – see Experiments)
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3. Signal Segmentation

The signal segmentation algorithm we developed partitions a signal into time
slices representing different vehicle states.  The vehicle states we consider are idle,
cruise, acceleration and deceleration.  The TP signal in particular is a good candidate for
segmentation because its behavior closely mimics these four states of the vehicle.  In the
TP signal, signal rises occur during periods of acceleration, declines occur during periods
of deceleration and the relatively flat TP signal indicates cruise or idle.  From TP we can
make a good estimate of the vehicle’s state at any given time and partition the signal into
segments representing time periods when the vehicle state is consistent.  Figure 3 above
(section 2) shows an example of a typical TP signal segmented using our segmentation
algorithm.

Using TP as the leading signal, we apply the segments obtained from
automatically segmenting the TP signal to other signals from the same vehicle recording
in order to label the corresponding vehicle states in those signals.  In Figure 5 we show
the RPM and SPARKADV (Spark Advance) signals overlaid with the TP segments from
figure 3, demonstrating how the TP segments map to other signals.  The issue then
becomes how to best segment the TP signal.  We propose an approach based on multi-
resolution analysis (MRA) below that uses wavelet coefficients to help find segment
boundaries.

3.1 Using Wavelets and Multi-resolution Analysis in Signal Segmentation

Our automatic segmentation algorithm is based on MRA and uses the discrete
wavelet transform (DWT) [9, 18, 19] to isolate features in multiple scales.  The DWT has
been used recently for many other applications including image compression [23], pattern
recognition [4], speech processing [13], signal detection [17], astronomy [3] and model
estimation [5].

Finding segment boundaries is a type of edge detection problem.  In particular,
the states acceleration and deceleration correspond to rising and falling edges in the TP
signal respectively. With the correct choice of mother wavelet function, the wavelet
coefficient values associated with a signal can be used to identify these edges. [18].

Figure 5: Segments from the TP signal in figure 3 applied to the RPM and SPARKADV signals.
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Furthermore, the wavelet coefficients tend to isolate signal features in (such as edges) by
scale.  This allows us to tune the segmentation to avoid certain edges occurring from
random noise or very smooth changes.

We implement the DWT using the FWT (Fast Wavelet Transformation) algorithm
[18, 19].  The first stage of FWT starts with the original signal.  By passing the signal
through special low and high pass filters associated with the mother wavelet function, we
obtain detail wavelet coefficients corresponding to the high frequency details of the
signal and approximation coefficients corresponding to the signal minus the details.
These two sets of coefficients are then downsampled by 2 before the algorithm continues
by repeating the process on the approximation coefficients as we show in figure 6 below.

We label the detail coefficients as CDk where k is the level of decomposition
(number of iterations of the filtering and downsampling steps).  The approximation
coefficients are similarly labeled as CAk. As k becomes larger, the corresponding detail
coefficients, CDk indicate coarser (larger scale) details in the signal.  High frequency
details can be found in the fine detail levels (e.g. 1-3), while low frequency details can be
found in the courser detail levels (e.g. 4-6).  Specifically what the detail coefficients
indicate is dependent on the mother wavelet function.  In our case we have chosen to use
the mother wavelet DB1 (Daubauchies One) because its detail coefficients indicate sharp
changes in a signal indicating transition states (acceleration or deceleration).
Specifically, using DB1 sharp changes correspond to peaks and valleys in the detail
coefficients obtained from the FWT.

3.2 Segmentation algorithm

The segmentation has four major steps we describe below.  Details of each of
these steps follows.

1. Create approximate segment boundaries.  This step uses the wavelet
coefficients from a range, [1, K], of detail coefficient levels to place segment
boundaries very close to the correct location in the signal. We use a recursive,

Original
Signal

H(x)

CA1G(X) CD2

CA2

H(x)

G(X)

CD1

Figure 6: Diagram of the steps of the FWT.  H(x) and G(x) are the high and low pass filters
respectively associated with the chosen mother wavelet funciton.  CDn are the detail coefficients
at level n and CAn are the approximation coefficients at level n.
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multi-scale algorithm to divide large segments into multiple smaller segments
for further detailed analysis.

2. Combine same state segments: After step 1, some adjacent segments may have
the same state and this step joins the segments together.

3. Fine tune segment boundaries: This step looks at a small neighborhood,
typically one or two samples, around the segment boundaries and shifts the
boundaries to more optimal locations.  This step also removes any steady
states (idle or cruise) that are too short to be significant.

4. Combine same state segments again: The process in step (3) may create
adjacent same state segments, so we re-run step (2).

The first step uses a recursive procedure to examine increasingly finer levels of
detail in the signal.  Segments begin as large, inexact boundaries and are fine-tuned as
finer levels of detail coefficients are examined.  We have found that if we ignore the
coarse level coefficients, we cannot identify certain smooth changes in the signal. On the
other hand, if we ignore the finer level coefficients, we miss small changes.  The
following parameters are used to control the segmentation results.

(1) 1β, the zero threshold. This is used to determine if the absolute value of a CD1

coefficient is small enough to be called 0. 1β > 0.  The zero threshold at level k, kβ ,
is calculated using the equation kβ = 1β+ (k-1)* 1β*λ, whereλ is a constant that
accounts for the natural scaling of the coefficients across different levels. Thresholds
that are too high result in some steady states with high fluctuation, while thresholds
that are too low result in many, tiny segments.

(2) λ, the coefficient level-biasing factor (see (1)).  If λ > 1 then smooth transitions in
the signal are more likely to be labeled as STEADY (e.g coarser coefficients are more
likely to be ignored).  If λ < 1 smooth transitions are more likely to be labeled as
transition states, such as ACCEL or DECEL (e.g. coarser level coefficients have
greater impact).

(3) η , the boundary pinpointing neighborhood. This is the number of the neighboring
coefficients that are searched during step 3 of the algorithm.  This parameter has the
greatest impact on very short and sharp transition states.  If it is too high the boundary
may jump out of a local maximum or minimum and result in overlapping segments.

(4) 0µ , the length of acceptable steady states.  This parameter primarily impacts the
amount of padding added to transition states.  Generally, we set this to be about 1
second in the time domain.

(5) SL  and EL , the starting coefficient detail level and ending coefficient detail level
respectively.  We have set EL  = 0, and SL  > EL .  If SL  is too low, we may miss
some smooth transition information.  If SL  is too high, we get too much padding on
transition states while other aspects of the segmentation do not improve.

Each recursive instantiation of the algorithm focuses on one section of the signal
represented as the indexes, [begin, end), into the signal’s detail wavelet coefficients at a
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given level.  The assumed state of the segment when the algorithm begins, is also passed
into the algorithm.

The algorithm iterates through every coefficient at the given detail level, tracking
consecutive sequences of 0s (determined using kβ ), positive values or negative values.
These sequences represent the states cruise, deceleration, and acceleration respectively if
the mother wavelet function used is DB1.  We use STEADY, DECEL and ACCEL to
denote the three states, respectively. Note that we do not differentiate between idle and
cruise, calling them both STEADY. Idle states are determined later using information
from another signal.

Every time the value of the coefficients changes between 0, positive, and
negative, we have a state change and we locate the end point of the previous state.  The
endpoint is found using the location and state of a segment to optimize the endpoint
location according to the following rule: pad transition states and shrink cruise states.
This rule is based on the fact that TP transitions tend to indicate the beginning of a
vehicle state change.  There is always some time delay between when TP changes and the
vehicle reacts to this change.  The padding at the end of transition states leaves some
room for the reaction time of the vehicle.

Steady states are handled slightly differently than both acceleration and
deceleration states.  If the value of a coefficient is 0, we increment a counter.  If the
number of consecutive 0s is over a given limit, the state is considered STEADY.  This
eliminates short cruise segments (e.g. “steps”) and further pads transition states.

Once we have identified a state’s begin and end boundaries, we recursively call
the Segment procedure to further sub-divide the segment as necessary.  This is necessary
because the wavelet transform tends to isolate features of different scales at different
levels of the detail coefficients.  It is not uncommon for a transition state to appear in one
level of detail coefficients and be totally absent in another.  Moving to finer levels of
coefficients guarantees we find all significant vehicle states.  Furthermore, we can more
precisely locate segment boundaries.

The base case of the recursion occurs at level EL , here EL =0.  It indicates that
we are operating on the original signal instead of the coefficients.  Here we simply create
the segment.  Because we use depth-first recursion, the segments are created in order,
from the first signal sample to the last.

The recursive partitioning of the Segment procedure will sometimes segment one
large state into a few smaller states.  Therefore, we run a simple algorithm to combine
adjacent same-state segments after this procedure is over.  Lastly we need to fine tune
segment boundaries.  We use the original signal to check the neighborhood, usually two
samples (η =2) around each segment boundary and move them slightly according to these
rules:

1. Move the beginning of accelerations and the end of decelerations to the local
minimum farthest to the right.

2. Move the end of accelerations and the beginning of decelerations to the local
maximum farthest to the right.
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When we finish this process we may have produced steady states that are too
short, so we eliminate those based on 0µ .  We also must remove all adjacent same state
boundaries again in case they were created when we removed a steady state.

We have found that the parameter values, SL =3 or 4, EL =0, 1β=0.015, λ =0.60,
η  =2 And 0µ =20 give good results most of the time.  However, it is difficult to optimize
the parameters because “good,” in this case, is subjective.  One example was shown in
figure 3.  For signals with relatively little noise (small fluctuations) we get nearly 100%
accuracy.  When the signals are noisier, we get 98% accuracy. What we desire is
correctly positioned segments that don’t include behavior that should occur in other
states, e.g. acceleration states with no significant decreases.  Currently, we manually
examine the segments before using them in training.  Any segments that are poorly
located are removed from the training set.

4. Feature Extraction

The goal of this module is to extract significant diagnostic features from the
segments obtained in the segmentation module.  We define a feature to be any property of
the signal within a segment that is useful for describing normal or abnormal signal
behavior within the given segment.

Based on vehicle diagnostic engineering and signal processing knowledge, we
have found the following features to be useful:

1. Segment state. Either idle (0), acceleration (1), cruise (2) or deceleration (3).
2. Segment Length.  Generally, signal behavior within a segment is dependent on the

length of the segment.  For example, an long acceleration state will likely result in a
much greater change in RPM than a very short one.

3. Signal Max and Min.  The maximum and minimum values of the signal within a
segment.  These features are valuable for detecting out of bounds conditions such as
TP dropping below its idle threshold.

4. Signal Range. The range of a signal in a segment is defined as ymax-ymin where ymax

and ymin are the maximum and minimum values of the signal within the segment.
5. CDk Energy. The energy of the CDk wavelet coefficients within a segment.  It is

calculated using:

  
L

y
e i

i∑
=

2

where L is the length of the segment, iy  is the CDk coefficient, and e is the energy.
The energy reflects the average noise level of the signal in the segment. It is
especially useful to detect faults indicated by noise.

6. CDk Average. The average value of CDk wavelet coefficients within a segment.  This
is similar to (5) above; however, it retains sign information and can be useful for
indicating the direction of motion within a segment.
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The features listed above pertain to a single signal.  As we have shown earlier, a
single signal from a vehicle is often not sufficient for detecting abnormalities.  Therefore,
we may also include features that are combinations of features from other signals to form
a more complete feature vector.  Typical ways of combining the features include:

a. Simple copy:  Copy a feature from another signal within the same segment.
b. Difference:  Take the difference between a feature of one signal from another

signal within that segment.
c. Ratio:  Take the ratio of a feature from two different signals within the

segment.

In our experiments with TP and TPCT (see section 6) we chose to use the feature
TPmin – TPCTmax as a feature because certain values of this distance indicate a bad TP
signal.  Even additional signal features may not be sufficient to diagnose some types of
faults.  Many signal such as RPM are effected greatly by the vehicle inertia and the
values of features in a segment may depend on the behavior in previous segments.
Therefore we will sometimes place features from previous segments into a feature vector
to account as a time delay factor.  We use this approach in our TP/RPM experiments
when we placed the previous state and length of previous segment into our feature vector.

Each signal has a different set of features to account for their different behavioral
patterns, signal dependencies, time delays, and common faults. Choice of which features
to use is based partly on engineering knowledge of vehicle engineers and partly on
experimentation.  We begin by examining typical behaviors of a signal with an expert
who describes the significance of specific features within the signal, dependencies for the
signal, and typical fault cases.  From this expert information, we create a feature vector
from the set of possible features listed above, that we believe to be the best for capturing
the information explained by the vehicle expert. Finally, we run experiments using the
features and analyze the data for consistency and ability to highlight common faults.  If
necessary, we modify the feature vector based on experiment results or additional expert
information and continue until satisfactory results (95-100% identification of bad
segments) are obtained.

5. Signal Fault Diagnosis Using Fuzzy Logic

The theory of fuzzy logic is aimed at the development of a set of concepts and
techniques for dealing with sources of uncertainty, imprecision and incompleteness.
Fuzzy systems have been used successful in many applications including control theory
where gradual adjustments are necessary, control systems, business and even the stock
exchanges [1, 20, 22, 24, 21, 14, 6, 11,16].  The nature of fuzzy rules and the relationship
between fuzzy sets of differing shapes provides a powerful capability for incrementally
modeling a system whose complexity makes traditional expert systems, mathematical
models, and statistical approaches very difficult.  The most challenging problem in signal
diagnostic problem is that knowledge of most signal faults is incomplete and vague due
to the complexity of modern vehicles.  This uncertainty leads us to seek a solution using
fuzzy diagnostic methods.
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Fuzzy reasoning is performed within the context of a fuzzy system model, which
consists of control, solution variables, fuzzy sets, proposition (rule) statements, and the
underlying control mechanisms that tie all these together into a cohesive reasoning
environment.  The fuzzy rules can be completely characterized by a set of control
variables, X = {x1, x2, ..., xn } and solution variables, y1, y2, … , yk.  In this application, we
have one solution variable y, which represents the fault status of the current signal
segment, i.e. a value of GOOD indicates a normal segment while a value of BAD or
UNKNOWN indicates a faulty or suspect segment. The control variables are the features
from segment feature vectors as described in section 4.  Each control variable xi is
associated with a set of fuzzy terms Σ i  = {α i

1
, ... α i

pi }, and the solution variable has its
own fuzzy terms Γ = {τ1 , ..., τq }.  For example Γ = {normal, likely normal, not likely
normal, abnormal}. Each fuzzy variable, control or solution variable, is associated with a
set of fuzzy membership functions corresponding to the fuzzy terms of the variable.  A
fuzzy membership function of a control variable can be interpreted as a control surface
that responds to a set of expected data points.  The fuzzy membership functions
associated with a fuzzy variable can be collectively defined by a set of critical
parameters that uniquely describe the characteristics of the membership functions, and
the characteristic of an inference engine is largely affected by these critical parameters.
The possible values of these critical parameters form a hyper space and the system
response to the control parameters form a control surface.  The optimization of fuzzy
membership functions requires finding a point in the hyper space of the critical
parameters that makes the control surface (the system response) react correctly to a set of
training data.  A fuzzy rule k has the following format:

IF (xk1 is α i
k1) AND (xk2 is α i

k2 ) AND ...(xkm is α i
km ), THEN y is τ i

k

where {xk1, xk2, ..., xkm} ⊂  X, {α i
k1, α i

k2 , ..., α i
km } ⊂  Σ i , and τ i

k  ∈  Γ.

Fuzzy rule generation and membership functions are critical to the performance of
a fuzzy system.

In this paper, we present a fuzzy intelligent system that can automatically learn
new knowledge from either data or engineering experts.  Figure 7 gives an overview of
the fuzzy intelligent system.  Figure 7 (a) shows the fuzzy learning component and (b)
shows the fuzzy inference component.

The fuzzy learning component has functions to acquire knowledge either from
engineering experts or from machine learning through training data.  The output of the
fuzzy learning component is a fuzzy knowledge base that is composed of the fuzzy rules
and the fuzzy membership functions (MSFs).  Signal diagnostic knowledge can be
generated either from engineering experts or training data by using a machine learning
algorithm.

The fuzzy inference component has the ability to apply signal diagnostic
knowledge to signal segment and derive the diagnostic result.  The most challenging
portion of the research is generating an effective knowledge base.

If we assume each fuzzy variable has the same number of fuzzy terms, a complete
set of fuzzy rules contains mn fuzzy rules, where n is the number of fuzzy variables and m
is the number of fuzzy terms for each variable.  When m and n become large fuzzy rule
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generation can be computationally expensive [1, 14, 20, 22].  The fuzzy rule generation
algorithm we used for fuzzy learning efficiently generates a compact and optimal set of
fuzzy rules.  In this algorithm, fuzzy rule generation is combined with fuzzy membership
optimization.  At the beginning of the algorithm, the critical parameters of the fuzzy
membership functions are initialized at arbitrary points, and are further optimized during
and after the generation of the fuzzy rules.  The fuzzy rules and the membership functions
are generated and optimized in an iterative fashion.  The details of the fuzzy rule
generation can be found in [LCH98].  The fuzzy rules generated by the algorithm are a
compact subset of the complete fuzzy rule set, which is determined by the control and
solution variables and their associated fuzzy terms.  Since the fuzzy rule pruning process
eliminates unreliable fuzzy rules, and the rule merging process combines several rules
into one, the resulting compact fuzzy rule knowledge base allow the system to perform
robust and efficient detection.  However, during fuzzy inference, it is possible that an
input data sample fires no rule in the knowledge base.  In order to deal with this problem,
we developed an inference scheme that fires the nearest rule to the input sample.

Generally, a fuzzy rule can be considered as a fuzzy cluster in input space.  For
example, a fuzzy rule written as

if x1 is LOW and x2 is HIGH, then y is MEDIUM

represents a fuzzy cluster centered at the center point of the fuzzy membership functions
of “x1 is LOW” and “x2 is HIGH”.  Based on this concept, we define the following
distance measure between a data sample and a fuzzy rule.  Let an input data sample be
I = {a1, … , an}, where ai is the instantaneous value of fuzzy variable xi, i = 1, … n, Σ  =
{α α α1 2, ,... , ,p  φ} is a set of fuzzy terms associated with each control variable in X, φ is
a symbol that serves as “don’t care”.  With the introduction of φ, a fuzzy rule can always
be written in the following general form:

if x1 is α1k  and x2 is α2k  and… and xn is αnk  then z is β
where α ik ∈ Σ , for i = 1, … , n, z is a solution variable and β is a fuzzy term.  For
example, for a system has three control variables, {x1, x2, x3}, and the fuzzy terms are
{LOW, MEDIUM, HIGH}  if we have a fuzzy rule:

if x1 is LOW and x3 is HIGH, then y is MEDIUM,

we can rewrite the rule equivalently as

if x1 is LOW and x2 is φ and  x3 is HIGH, then y  is MEDIUM

The distance between an input vector a = <a1, a2, … , an> and a fuzzy rule k is defined as

d = ( )a ci ik
i

n

−
=
∑ 2

1
,
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where cik is the center point of the fuzzy membership function of fuzzy variable xi for
fuzzy term α ik  ≠ φ, otherwise cik = ai, which sets (ai - cik ) = 0.  The fuzzy rule that has
the shortest distance to the input data a is fired.

Training Data

Fuzzy Rule
Generator

Data Input
Interface

Membership
Function
Optimizer

Fuzzy Rules &
Membership
Functions Linguistic

Fuzzy Interface

Engineering
Experts

(a) Fuzzy Rule Generation Process

Test Data Data Input
Interface

Fuzzy Inference
Engine

Fuzzy Rules &
Membership
Functions

Belief of Fault

Data Output
Inteface

(b) Fuzzy Inference Process

Figure 7: A high-level overview of the fuzzy learning process (a) and the fuzzy inference process (b).
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6. Implementation and Experiments

The algorithms described in the previous sections have been integrated into a
single system, ADSAS, and a number of experiments have been conducted using this
system.  Section 6.1 describes the functions of ADSAS and section 6.2 describes two
experiments in vehicle signal diagnosis.

6.1 Advanced Diagnostic Signal Analysis System

Advanced Diagnostic Signal Analysis System (ADSAS), is an intelligent system
for vehicle diagnostics and learning.  The system is implemented using the Win32 API
and is compatible with Windows 95/98/NT.  The system has two goals.  First, it provides
a powerful and flexible testbed for our research and experimentation.  Second, it is a
foundational component of a larger system used for vehicle diagnostics by engineers and
technicians in a major auto company.  We present screenshots of the system in Figures 8-
10.  Figure 8 is a general screenshot of the system’s primary windows.  Figure 9 shows a
close-up view of a signal including wavelet transform coefficients and segments.  Figure
10 shows the fuzzy intelligence system.

Figure 8.  Screenshot of ADSAS our current prototype diagnostic system.  There are three panes.  The left pane
is form managing the vehicle and signal data.  The right pane plots signals and transformation coefficients.  The
bottom pane displays data collected from the signal segments.
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In addition, ADSAS contains a number of functions supporting signal diagnosis.

• functions to load, view, and process any number of vehicle recordings and
signals simultaneously.

• extensive plotting capabilities including:
a) Multiple concurrent signal viewing
b) Zoom out an in to within one sample
c) Simultaneous wavelet and Fourier coefficient display using a second

pair of axis
d) Display of signals segments
e) Ability to save plot to file

• a module that automatically segments signals as described in Section 3.
• wavelet transformation functions
• fast Fourier transformation functions
• a fully integrated fuzzy intelligent system.

The system architecture, design and implementation is object oriented (OO) with
extensive reliance on data abstraction, encapsulation and polymorphism to make each
component more flexible.  Our system can easily add new functions, learning techniques,
learning parameters, data views, file converters or other components with a minimum of
re-coding.

Figure 9:  Closeup of plot pane showing wavelet coefficients
plotted below the signal.  The wavelet axis is to the upper
right of the plot.

Figure 10:  The fuzzy learning program used for machine
training and testing as described in section 5.
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6.2 Experimental Results

In this section we describe two groups of multiple signal diagnosis experiments
performed using ADSAS.  The task of ADSAS is to flag all signal segments that are
abnormal according to knowledge learnt by the fuzzy intelligent system described in
section 5 above.

The first group of signal diagnosis experiments is aimed at detecting faults in the
TP signal using both TP and Throttle Position Closed Throttle (TPCT) signals.  The
second group of experiments involves the detection of RPM stumbling using RPM and
TP.

6.2.1 Detection of faults in TP using TP and TPCT

The TP signal indicates the openness of the vehicle throttle.  It is recorded as a
voltage level typically between about 0.8-1.2V for idle and 5V-6V for wide-open throttle.
The TPCT signal is the baseline signal for TP and indicates the idling voltage.  TPCT is
set by the on-board computer every time the vehicle is started, which means the value for
TPCT is calculated by the PCM is equivalent to the minimum value of TP.

The following is the typical behavior of TP and TPCT for each of the four vehicle
states:

1. Idle:  TP = TPCT soon after engine start.  TP is very flat.
2. Acceleration:  TP > TPCT.  TP rises sharply or in steps.
3. Cruise:  TP > TPCT.  TP is either flat or is gradually sloping.
4. Deceleration:  TP > TPCT.  TP drops sharply, possibly with steps.

We were given the signals showing one typical fault that can be detected using the
TP and TPCT signals.  In this fault case, the throttle becomes shut too far near idle
causing TPCT to be adjusted to a value that is too low.  When the throttle springs back to
its normal idle position, the PCM thinks the vehicle is at partial throttle and dumps fuel
into the engine causing rough idle.  We show a plot of such a case below:
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We performed two tests using 6 recordings containing the fault and 6 recordings
of normal TP behavior.  In the first test, we used only CRUISE and IDLE segments
because these are the segments where most of the faulty behavior is observed.  Table 1
shows the fuzzy variables used and the number of fuzzy terms associated with each fuzzy
variable.

The diagnostic feature used in this problem is an 8-dimensional vector, x = <x1,
x2, …  ,xn>, with each element representing the following features:

x1: CurState: State of the current segment.
x2: Length: The length of the current segment.
x3: TP_Range: The range of TP signal in the current segment.
x4: TP_Min: The minimum value of TP in the current segment.
x5: TPCT_Range: The range of TPCT signal in the current segment.
x6: TPCP_Min: The minimum value of TPCT in the current segment.
x7: TPCP_Max: The maximum value of TPCT in the current segment.
x8: TP_Min-TPCT_Max: The difference between TP_Min  and TPCT_Max .

For this experiment, we have only one solution variable, y, which represents the
fault status of a segment.  GOOD (low value) represents a normal segment, while a value
of BAD (high value) or UNKNOWN indicates an abnormal segment.

Table 1. The number of fuzzy terms associated with each variable for the diagnosis of TP
and TPCT using data of two vehicle states only.

x1 x2 x3 x4 x5 x6 x7 x8

No of fuzzy terms 4 3 6 4 6 4 4 6

Test results from two experiments are shown in Table 2.  Experiment 1 differs
from experiment 2 in how the training and test sets were created.

Figure 11.  Typical example of TP closing too far, causing  TPCT to change.  When the TP moves back
to its normal position, the PCM thinks the vehicle is accelerating and dumps too much fuel into the
cylinder, causing rough idling.
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Experiment #1: All abnormal vehicle segments were placed in the test set.  The
remaining normal segments from normal and abnormal vehicles were
randomly chosen for the training set and the rest of the test set.

Experiment #2: Data for the test and training sets were randomly chosen from the
set of all segments, both abnormal and normal.

We generated a pool of 53 normal segments from the signals shown above and 11
abnormal segments.  The columns for the test results are interpreted as follows:

1. Experiment Number
2. Number of data in the training set
3. Number of training data mis-classified
4. Number of fuzzy rules generated
5. Number of data in the test set
6. Number of normal segments in the test set
7. Number of abnormal segments in the test set
8. Number of false alarms (good marked as bad)
9. Number of misfires (bad marked as good)

In both the training and test sets, ADSAS correctly flagged all bad segments and
did not generate any false alarms.

Table 2.  System performance on the diagnosis of TP and TPCT using data of two vehicle
states only.

Exp.
Number

Train # Train
misfire

fuzzy
Rules

Test # Test
normal

Test
abnormal

False
alarm

Misfire

1 48 0 26 16 5 11 0 0
2 47 0 30 17 12 5 0 0

The second group of experiments we included segments from all four vehicle
states.  Table 3 shows the fuzzy variables and their associated number of fuzzy terms
(note that only the number of fuzzy terms differs from the first group of experiments).
Table 4 gives the results of two experiments using the same format as shown earlier.

Table 3.  Fuzzy variables and the number of fuzzy terms associated with each variable for
the diagnosis of TP and TPCT using data of four vehicle states.

x1 x2 x3 x4 x5 x6 x7 x8

No of fuzzy terms 4 3 8 4 8 6 6 8

Table 4.  System performance on the diagnosis of TP and TPCT using data of four
vehicle states.

Exp.
Number

Train # Train
misfire

fuzzy
Rules

Test # Test
normal

Test
abnormal

False
alarm

Miss
fire
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3. 133 2 77 45 29 16 0 5
4. 129 1 63 47 49 7 6 0

In experiment 3, we had a training set of 133 normal segments.  2 of these were
incorrectly classified by the fuzzy system indicating some rule conflicts due to a small
amount of data inconsistency.  The fuzzy intelligent system generated 77 fuzzy rules.
When the system was tested using 29 normal segments and 16 abnormal segments, it
generated no false alarms.  However it missed 5 bad segments.

In experiment 4, we had a training set of 129 normal segments.  Only 1 training
data was mis-classified due to rule conflicts.  The fuzzy intelligent system generated 63
fuzzy rules.  When the system was tested using 49 normal segments and 7 abnormal
segments, it correctly detected all abnormal segments, and marked only 6 normal
segments as abnormal.

In all four experiments, we have only totally 3 mis-classifications of the training
data.  For the test set, the numbers of misfires are 0 in experiment 1 through 3 and 6 for
experiment 4, which is acceptable.  In experiments 1, 2 and 4, the system detected all
abnormal segments, which are excellent results in engineering diagnostics.

6.2.2 Detection of stumbling using RPM and TP

The second group of signal diagnosis experiments was conducted on RPM using
TP as a reference signal. We show the results of one of these experiments below.  The
typical behavior of TP and RPM was described earlier in section 1 and will not be
repeated here.

The features we selected for this experiments are targeted at a specific fault
common in vehicles, stumbling at idle (see Figure 12). To detect this fault, we used the
following 10-dimensional feature vector, x = <x1, x2, … , x10>.  The elements, xi, are as
follows:

x1: CurState: State of the current segment.
x2: PrevState: State of the previous segment.
x3: Length: The length of the current segment.
x4: PrevLength: The length of the previous segment..
x5: TP_Range: The range of TP signal in the current segment.
x6: RPM_Range: The range of RPM signal in the current segment.
x7: Average of CD2 of  TP signal
x8: Average of CD3 of  TP signal
x9: Average of CD2 of  RPM signal
x10: Average of CD3 of  RPM signal

This experiment uses the same solution variable, y, as in the first experiment,
representing the fault status each segment.
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There were 124 normal segments and no abnormal segments in the training set.
In the test set, there are 41 segments of which 25 are normal and 16 are abnormal.  The
data is collected from 7 recordings of bad vehicle behavior and 4 recording of good
vehicle behavior.  The fuzzy terms used for each element are listed in Table 5.

Table 5. Number of fuzzy terms for each element of x.
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

No. of fuzzy terms 4 4 8 8 6 6 6 6 6 6

After training, 184 fuzzy rules were generated by the fuzzy learning system. The
result for training and test set is listed in Table 6.  The meaning of each column in the
results is the same as for the TP/TPCT experiments described earlier.

Table 6. System performance of diagnosis of stumbling by using TP and RPM
Train # Train

misfire
fuzzy
Rules

Test # Test
nor.

Test
abnormal

False
alarm

Miss
fire

124 0 184 41 25 16 8 1

There are no misclassifications in the training set. There were 8 false alarms about
half of which we traced back to gear shifting patterns in the RPM signal not represented
in the training set.  We only had one misfire (normal labeled as abnormal.)

From the above experiments, we can see the diagnostic system using wavelets and
fuzzy learning worked very well in the diagnosis of TP, and RPM stumbling problems.
The results are encouraging, and we are currently applying the system to other more
complex signal faults.

Figure 12: Example of stumbling. The location of stumbling is circled.
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7. Conclusions

In this paper, we have described an intelligent system, ADSAS, using wavelet
transform and machine learning, to solve real-world vehicle engine diagnosis problems.
The experiments show encouraging results with a typical 95-100% correct classification
rate for abnormal segments.  In some cases, normal segments were labeled as abnormal
(false alarm), usually through the effects of other system factors, such as gear changes,
that were not completely represented in the training data.  ADSAS is a powerful signal
diagnostics tool. It is capable of carrying out major system functions including signal
viewing, segmentation, feature extraction, learning, and testing.  Though we only show
results using signal pairs, (TP, TPCT) and (TP, RPM), our framework can be expanded to
larger signal group without difficulty.  In addition to its diagnostics capability, ADSAS is
a good research testbed for experimenting different learning approaches, diagnostic
feature selection, etc.
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