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Abstract

This paper describes the result of our study on
neural learning to solve the classification problems in
which data is unbalanced and noisy.  We use
multidimensional Gaussian distribution to analyze the
separation of different class samples in a training
data set, and then generate artificial noise samples in
the training set using a noise modeling algorithm.
The noise analysis allows us to identify special
densities in the feature space that are prone to
prediction error.  We argue that by properly generate
extra training data samples around the noise
densities, we can train a neural network to have
stronger capability of generalization and control the
classification error of the trained neural network.  In
particular, we focus on the problems that require a
neural network to make favorable classification to a
particular class.  The noise modeling algorithm has
been implemented to solve a classification problem of
good(pass) and bad(fail) vehicles in test sites of
automobile assembly plants and a multi-layered Back
Propagation neural network has been used in our
experiments.  The experimental results showed that
the noise modeling algorithm was very effective in
generate extra data samples that can be used to train
a neural network to make favorable decisions to a
minority class and to have increased generalization
capability.

1. Introduction

Neural networks have been applied to various
problems including engineering diagnosis, pattern
classification, intelligent manufacturing and control
problems[Lu et al 1998; Dagli, 1992; Kosko, 1992].
There has been much progress in developing
methods for training complex configurations of
these networks, but little was known about the
general learning properties of neural
networks[Mackay, 1991].  Our research is focused
on the following three major issues within the
problem scope of pattern classification: neural
learning from unbalanced data samples, neural
learning from noise data, and making intentional
biased decisions.  In many application problems,
the training data for each class is extremely
unbalanced.  One example is to classify defect
products at the end of manufacturing lines such as

automobile assembly plants.  One thing in common
in manufacturing environment is that most products
are good and only a few are defects.  If we further
divide the defect products into classes of different
defect types, we will have far more data samples
from the “good” class than any one of the defective
classes for neural learning.  This problem has been
referred to as classification under unbalanced
training data.  Lu et al showed in [1998] that
different neural networks have different degree of
abilities in learning from unbalanced data.  If the
training methods are not proper, the features
representing the classes that have small number of
samples in the training set may likely be ignored by
the neural networks.  This problem is caused by the
overwhelming number of learning samples in one
class input to the learning system that partially
undo the training effect on the small learning
samples of a different class.  This problem is more
serious when data set has high level of noise.  Data
noise in classification problems can be generally
described as data samples of different classes
inseparable in the feature space.  In another word,
if a data set is considered noisy, the class boundary
to separate different class samples in the feature
space is almost impossible to draw.  Noise in
training and test data rises from a number of
sources, the set of features used for classification is
not sufficient to draw class boundaries, data
samples are miss labeled, poor data acquisition
processes, etc.  These problems are inevitable in
many engineering applications.  In particular in
cases where the data samples in each class are
unbalanced, the classification features of the
minority classes are often ignored during neural
learning[Lu et al 1998].

In this paper, we present a noise modeling
algorithm that uses the multidimensional Gaussian
distribution to analyze the separation of difference
class samples in a training data set.  Based on the
analysis it generates artificial noise samples to add in
to the training set in order to train a neural network
that can make more favorable classification decision
to a particular class and, more important, a neural
network that can generalize.  Our approach is based on
the following hypothesis: in supervised learning, the
noise model or distribution in the unknown test data
set is not grossly different from the training data and
the ability of generalization of neural networks is very



much depending on the data noise along the class
boundaries.  We applied the noise modeling algorithm
to a multi-layered neural network with Back
Propagation.  The performance of the neural network
trained using the data generated by the noise model
algorithm is presented and compared with the
networks trained with conventional methods.

2. Noise estimation and modeling

The problem under the study is two-class pattern
classification.  For a given data sample si in a given
class, if we assume the noise is in the Gaussian
distribution, data samples of opposite class distributed
around si can be modeled as random vectors Z that
have the density function:

where M is the dimension of each data sample and
Σ  is the covariance matrix of si and its M nearest
neighbors. We can further decompose Σ  as

where the diagonal entries of Λ  and the column

vectors of Q are the eigenvalues and eigenvectors
of Σ  respectively.  Since Σ  is symmetric, all
eigenvalues and eigenvectors are real.  According
to [Rubinstein, 1981], if covariance matrix Σ  is
positive definite and symmetric, there exists a

unique lower triangular matrix C such that such that

TCC=Σ .
The random vector Z can be represented as:

where Y=(y1,y2,…yM) is a random vector generated
by a Gaussian function with zero mean and identity
covariance matrix. The jth column vector of Q, qj, j
= 1, 2,…, M, is computed recursively using the
following formulas:

The initial vector is computed using b1 = a1 – si,
where a1 is the nearest neighbor of the opposite
class of si.  The successive column vectors can be
computed recursively. The eigenvalues of Λ  can be
obtained by

for j = 1, 2,…, M, where r is the radius of a
hypersphere that the probability of the hypersphere
enclose the local density is v.  Musavi et al showed
that for a given v, there is a fixed function relation
between r and M, and the values of r for M = 1, …,
10 can be found in [Musavi et al, 1994].

The eigenvectors of Q are the principal axes of
the ellipsoid of the constant potential surface(CPS)
of the Gaussian distribution function, and the
square roots of the neural networks the eigenvalues
define the lengths of the principal axes of the
ellipsoid.  The M nearest neighbors of the opposite
class are all on the surface of the hyper-rectangle
round si.  We use Figure 1 to illustrate the CPS and
its relationship to class boundary in the 2D space.
In the figure, A is a sample data from one class, B
and C are its two nearest neighbors of the opposite
class.  B and C are on the boundary of larger
rectangular bounded by 2||bj||, for j = 1, 2.  The
classification boundary between the two classes can
be drawn by the smaller rectangle, which is
bounded by ||bj|| and encloses the CPS ellipse. The
new random vectors Zj generated use formula above
are mostly located within the ellipse shown in green
“x”s.  In our implementation, we chose v = 0.9545,
with M = 2, r2 = 6.18 according to [Musavi et al,
1994].
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The shape of the hyper-ellipsoid is controlled by
the distribution of the M nearest neighbors of the
opposite class of the sample data si.  We use Figure
1 and the three examples in Figure 2 to analyze the
relationship between the distribution of the data
samples in the feature space and the Gaussian CPS.
In each example in Figure 2, we have one sample
data illustrated in blue color, and its two nearest
neighbors of opposite class marked as neighbor 1
and neighbor 2 illustrated in RED.  One hundred
new data samples were generated by the procedure
described above and are represented by green “x”’s
in all examples.
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Figure  1. Illustration of Gaussian local density.  A is a
data sample from one class, B and C are its two
nearest neighbors of the opposite class.  The
generated random vectors are green “x”’s.

-3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

Sample 1

Neighbor 1

Neighbor 2

x

y

(a)

-8 -6 -4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8

10

Sample 1
Neighbor 1

Neighbor 2

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neighbor 2

Sample 1

Neighbor 1

x

y

(c)

Figure 2.  Three examples of different Gaussian CPS
generated by different distributions of sample points.



It is clear that the newly generated data samples
form an ellipse centered at the selected data sample.
The principal axes are proportional to the two
eigenvalues.  In both Figure 2(a) and (b), the two
nearest neighbors of the are located in the same
direction, and the resulting ellipse is long and
narrow.  In both Figure 1 and Figure 2(c), the two
nearest neighbors of each data sample are located in
different directions in the feature space, more than
90o apart, the resulting ellipses are more like a
circle, which means that the two eigenvalues in
each example have very close values.  Table 1
illustrates the eigenvalues, eigenvectors and the
Euclidean distances between every sample data to
its nearest neighbors.  The characteristics of the
eigenvalues and eigenvectors of the CPS are
summarized as follows.
1. According to its definition, the first eigenvalue

0λ  is a monotonically increasing function of

the distance between sample data and its
nearest neighbor of the opposite class.  This is
verified by our experiment result shown in
Table 1.

2. If the nearest neighbors are located in the same
orientation with respect to the sample point, the
CPS ellipsoid is long in the principal axis but
narrow at the others, and the new data samples
have high density in the ellipse.  In Figure 2 (a),
the two nearest neighbors are close and at the
same direction with respect to the sample data,
and in (b), the two nearest neighbors are in the

same direction but quite apart.  However the
two CPS’s in Figure 2(a) and (b) are similar in
shape, and the new data samples have high
density in the both ellipses.

3. If the neighboring samples are far away from
one another in terms of direction with respect to
the sample data, the corresponding principal
axes in the Gaussian CPS should be similar in
lengths and the CPS is more like a circle.  Both
Figure 1 and Figure 2(c) along with Table 1
show this property of CPS. Quantitatively, this
property can be measured by the ratio of iλ  i

=0, 1.  The difference between eigenvalues can
help us to understand the distribution of the
samples of the opposite class.  For example, if

0λ  is much larger than all of the other

eigenvalues iλ (I=1,2,…M-1), most of the data

samples of the opposite class concentrate in the
direction of the eigenvector corresponding to

0λ .  If all of the M eigenvalues are very close

to each other, the samples of the opposite class
distribute evenly (to some extent) in a hyper-
sphere around the sample.

These properties of eigenvalues and the
corresponding CPS ellipsoid are used to guide our
training of neural networks.

Figure 1 Figure 2(a) Figure 2(b) Figure 2(c)

d0 0.1211 0.9727 0.224 0.26

0λ 0.0049 0.0393 0.00906 0.0105

E0 [0.2873, -0.9578] T [-0.6438, 0.7652] T [-0.873, 0.488] T [-0.1961, -0.9806] T

d1 0.3600 1.10269 0.933 0.6678

1λ 0.01336 0.000059 0.000045 0.0228

E1 [-0.9578, -0.2873] T [0.7652, 0.6438] T [0.488, 0.873] T [-0.9806, 0.1961]T

Table l  The Euclidean distances di, eigenvectors, qi, eigenvalues, iλ for i = 0, 1 of the examples shown in Figure 1 and 2.

3.  Neural Learning from unbalanced
training data

This section describes the neural learning method
that utilizes the Gaussian CPS distribution
described in the last section.  We attempt to train a
neural network to learn the classification features

from the data samples of a minority class in the
training set and to make more favorable decisions
to the minority class.  For the convenience of
description, we referred to the two classes of data
as minority and majority classes respectively.  In
many applications, if error is inevitable, a neural
network is expected to err on one particular class



rather than the other.  For example, in the
classification of good/defect products in a
manufacturing line, if a product is classified as a
defect, it will be checked and repaired if necessary.
Therefore, it is better to misclassify good products
as defect rather than the other opposite type of
error.  Lu et al[1998] showed that in the case of
unbalanced, noisy training data samples, multi-
layered backpropagation network(BP), Radial-Basis
Function(RBF) and FUZZY ARTMAP all ignore
the minority class, namely minority data samples
are often misclassified.  The algorithm we
investigated was to generate new minority data
samples near the classification boundary using the
Gaussian CPS and add these new data samples to
the training data.  The neural networks trained on
this set should make more favorable decision to the
minority class with the minimization of
misclassification of the majority class and have
increased generalization capability.

For every data sample s of the minority class in
the training set, we attempt to generate p new data
samples around s subject to its local Gaussian
distribution of the opposite class.  Let us assume
the input vector is M dimensional.  The noise
modeling algorithm first finds the M data samples
of the majority class that are closest to s, t1, t2, …,
tM, from which we construct the MxM covariance
matrix of the Gaussian probability density function
described in the last section., and obtain M
eigenvalues of the covariance matrix 0λ , 1λ , ..

1−Mλ .

We need to be cautious about generating new
noise samples.  If we generate unnecessary ones,
we may weaken the classification capability of the
neural network on the majority class.  For example,
if 0λ  is large, it implies that s is quite apart from

the majority class, and a neural network may easily
learn the classification boundary around s.  If we
artificially generate more minority samples, we may
force the trained neural network to make more
classification error on the majority class than
necessary.  The noise modeling algorithm generates
new data samples only at the locations where it is
difficult to differentiate minority data samples from

the majority samples, and adding noisy random
vectors does not affect too many majority samples.

Based on the properties of Gaussian CPS, we
developed the following rules.  Let 1ρ  and 2ρ , the
number of majority and minority samples falling
within the hyper bounding box R of sample data s
and s, t1, t2, …, tM respectively.  Specifically, R is
equal to ||s-t1||x||s-t2||x…||s-tM||.

Rule1: If 1ρ , the density of majority class samples
around s, is large, do not generate noisy data
around s.
Rule2: If 2ρ , the density of minority class samples
around s, is small, do not generate noisy data
around s.
Rule3: If 0λ , the 1st eigenvalue of Gaussian

covariance matrix, is large, do not generate noisy
data around s.

For a minority data sample s, only if s does not
satisfy any of the three rules, the noise modeling
algorithm will generate p new data samples around
s.  The value p can be determined based on the ratio
of the number of data samples in the majority and
the minority class.

Another important issue is to limit the noise
random vectors in the hyper bounding box R.  As
we discussed in the last section that the random
vectors fall within the CPS ellipsoid with the
probability of v.  However with the probability of
1-v, the new random vectors may fall outside the
Gaussian CPS.  Furthermore, the CPS ellipsoid may
exceed the hyper bounding box R due to the
symmetry of Gaussian distribution.  Since we have
no knowledge of what beyond these data samples,
the noise modeling algorithm discard the new noise
data samples generated beyond the hyper bounding
box(see Figure 3).  Therefore, the noise modeling
algorithm accepts a random vector as a noise data
sample only it belongs to the conjuncture of the
rectangular and the ellipse(see Figure 3, where the
rectangular is the bounding box equal to ||s-t1||x||s-
t2||.)



4. Experiments and Performances

In this study, we conducted neural training using
the noise modeling algorithm on a BP neural
network[Rummelhar and McClelland, 1986] of
three layers and a FUZZY ARTMAP neural
network.  The BP neural network has nodes 5-4-4-
1, Momentum =0.90, Tanh function, and epoch
size=16.  A FUZZY ARTMAP network consists of
two interconnected layers of neurons, F1 and F2.
The input leads to activity in the feature detector
neurons in F1, which is also called short-term
memory activity.  The short-term activity passes
through connections to the neurons in F2.  Each F2
neuron adds together its input from all the F1
neurons and generates an output.  A measure will
be taken over all the neurons in F2 and the output
of one neuron will be selected as the system output,
i.e. Winner-take-all.  A major characteristic of a
FUZZY ARTMAP network is that it allows a top-
down feedback from F2 to reinforce the activity in
F1.  A learning algorithm of an FUZZY ARTMAP
network is to determine ijw , the top-down weight

from winning node j in the F2 layer to a node i in
the F1 layer, and jiz , the corresponding bottom-up

weight.  The detail of the learning algorithm can be
found in[Carpenter et al, 1992; Lu et al, 1998].

The data used in the experiments are the
vehicle test data acquired at the end-of-assembly

lines in the Ford Motor Company.  The two neural
networks are trained to classify whether a given
vehicle is “good” or “bad” using input vectors in
five dimensions.  Since new vehicles manufactured
by Ford Motor Company are mostly in the “good”
class, the data samples in both the training set and
test set are unevenly distributed.  The data sets used
in our study were downloaded directly from
assembly plants in the Ford Motor Company.  To
illustrate the algorithm, we particularly chose the
data samples from one particular vehicle model that
contains high level of noise.  We randomly separate
the entire data samples into training and test with
the ratio of 2:1.

One way to estimate the noise level in a data set
is to count the number of the opposite class samples
within the hyper-bounding box of a given class.  In
the training set, we have total 727 good vehicle
samples and 136 bad vehicle samples.  We found
that 96% good data samples are inside the hyper
bounding box of bad vehicle class, and 88% of bad
data samples are within the hyper bounding box of
good vehicle class.  In the test set, we have 356
good vehicle samples and 121 bad vehicle samples.
We found that 93.3% of good vehicle samples are
within the bad vehicle hyper bounding box and
85.7% bad vehicle samples are within the good
vehicle hyper-bounding box.  It can be interpreted
as follows.  In the training set, if we want to
classify bad vehicles 100% correctly, we may be
able to classify correctly only 4% of good vehicles;
if we want to classify good vehicles 100%
correctly, we may be able to classify correctly only
12% of bad vehicles.  Similarly in the test set, , if
we want to classify bad vehicles 100% correctly,
we may be able to classify correctly only 6.7% of
good vehicles; if we want to classify good vehicles
100% correctly, we may classify correctly only
14.3% of bad vehicles.  These figures can be used
as the performance metrics for a classifier: a neural
network must give better performance than these
figures.

The experiment results of the two neural
networks are shown in Table 2.  The first
experiment was conducted on the original training
and test set.  As we see from the first entry in Table
2 that the BP neural network was not at all capable
of learning the features of the minority class from
the training set, and as a result, the BP network fail
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Figure 3.  Only the data samples that are within the conjuncture
of the bounding box and the ellipse are accepted as new
training data samples.



to classify any bad vehicles in either the training
nor the test set.  The FUZZY ARTMAP was better
than the BP at learning the minority class features.
It has achieved much better performance than the
BP network on the minority class in both the
training and the test data.  The second experiment
was conducted on the new training set obtained by
duplicating every bad vehicle sample in the original
training set 10 times and adding the newly
generated ones to the training set.  The BP network
was able to classified a few of the minority class
samples with the price of misclassifying a large
number of good vehicle samples.  FUZZY
ARTMAP did not learn more about the minority
class on this set of training data.  Instead its
performance on the minority class in the test set has
dropped from the first experiment, even though its
performance on the training data was very good.
The third experiment was conducted on the new
training data set generated using the noise modeling
algorithm described in this paper.  In the
implementation, if the Gaussian CPS of each
selected bad samples contained less than three good
vehicle samples and more than one bad vehicle
samples, then the noise modeling algorithm would
generate ten random data samples around each of
the selected bad vehicles were generated and added
to the training set.  The result of this experiment
showed that both the BP network and the FUZZY
ARTMAP network were able to learn from this new
set of training data the classification feature of the
minority class, and both gave much better
classification capability on the minority class.  The
improvement of classification performance of the
BP network is particularly interesting.  While
trained on the original training set, the BP network
fail to classify any bad vehicles.  After the training
on the new training data, the BP network was able
to classify more than 66% of bad vehicles on the
training data and more than 45% on the test set,
which is comparable to the FUZZY ARTMAP
network.  The FUZZY ARTMAP has in general
better capability of learning the minority class
features than the BP network as shown in the first
two experiments.  When the FUZZY ARTMAP
network was trained on the new data set generated
by the noise modeling algorithm, it gave better
performance not only on the minority class but also
on the majority class.

5. Conclusion

We have presented an algorithm, noise modeling
algorithm, for training a neural network to learn the
classification features from unbalanced data samples.
The algorithm was developed based on the Gaussian
CPS theory to generate random noise over the
classification boundary for a given training set with
the aim of increasing classification features of a given
class and the capability of generalization for the neural
networks.  We showed through experimental results
that the noise modeling algorithm is effective in the
training of both BP and FUZZY ARTMAP neural
networks.  We speculate that the algorithm can be
extrapolated to the general classification problem of P
classes within which the p classes are to be
emphasized, where p < P.  By generating noise data
samples along the classification boundaries for these p
classes using the noise modeling algorithm, the trained
neural network would have increased classification
capability and generalization ability over the p classes.
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BP network: correctly classification rate FUZZY ARTMAP: correctly classification rateData sets
Training set result Test set result Training set result Test set result

Original Training set Good vehicles: 100%
Bad vehicles: 0%

Good vehicles: 100%
Bad vehicles: 0%

Good vehicles: 87.3%
Bad vehicles: 91.91%,

Good vehicles: 69.66%
Bad vehicles: 45.45%

Duplicate 10 Good vehicles: 45.94%
Bad vehicles: 28.67%,

Good vehicles: 48.31%
Bad vehicles: 32.47%

Good vehicles: 90.51%
Bad vehicles: 94.12%

Good vehicles: 75.28%
Bad vehicles: 41.56%

Training data generated by
the Constrained Gaussian
CPS algorithm

Good vehicles: 48.56%
Bad vehicles: 66.77%

Good vehicles: 48.88%
Bad vehicles: 45.45%

Good vehicles: 88.72%
Bad vehicles: 94.25%

Good vehicles: 71.91%
Bad vehicles: 48.05%

Table 2.  Experiment results of BP and FUZZY ARTMAP.


